Câu hỏi:
(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Trong không gian tọa độ \(Oxyz\), cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}\) và hai điểm \(A\left( {6;0;0} \right),B\left( {0;0; - 6} \right)\). Khi \(M\) thay đổi trên đường thẳng \(d\), hãy tìm giá trị nhỏ nhất của biểu thức \(P = MA + MB\)
A. \(\min P = 6\sqrt 3 \).
B.\(\min P = … [Đọc thêm...] về (THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Trong không gian tọa độ \(Oxyz\), cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{{y – 1}}{2} = \frac{{z + 1}}{1}\) và hai điểm \(A\left( {6;0;0} \right),B\left( {0;0; – 6} \right)\). Khi \(M\) thay đổi trên đường thẳng \(d\), hãy tìm giá trị nhỏ nhất của biểu thức \(P = MA + MB\)
(THPT Bùi Thị Xuân – Huế – 2022) Trong không gian \(Oxyz\), cho mặt cầu \({x^2} + {y^2} + {z^2} = 9\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right) \in d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = 2 – 3t}\end{array}} \right.\). Ba điểm A, B, C phân biệt cùng thuộc mặt cầu sao cho\(MA,MB,MC\) là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \((ABC)\) đi qua điểm \(D(1;1;2)\). Tổng \(T = x_0^2 + y_0^2 + z_0^2\) bằng
Câu hỏi:
(THPT Bùi Thị Xuân – Huế - 2022) Trong không gian \(Oxyz\), cho mặt cầu \({x^2} + {y^2} + {z^2} = 9\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right) \in d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = 2 - 3t}\end{array}} \right.\). Ba điểm A, B, C phân biệt cùng thuộc mặt cầu sao cho\(MA,MB,MC\) là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng … [Đọc thêm...] về (THPT Bùi Thị Xuân – Huế – 2022) Trong không gian \(Oxyz\), cho mặt cầu \({x^2} + {y^2} + {z^2} = 9\) và điểm \(M\left( {{x_0};{y_0};{z_0}} \right) \in d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = 2 – 3t}\end{array}} \right.\). Ba điểm A, B, C phân biệt cùng thuộc mặt cầu sao cho\(MA,MB,MC\) là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \((ABC)\) đi qua điểm \(D(1;1;2)\). Tổng \(T = x_0^2 + y_0^2 + z_0^2\) bằng
(Chuyên Vinh – 2022) Trong không gian \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 4x + 12y + 6z + 24 = 0\). Hai điểm \(M\), \(N\) thuộc \((S)\) sao cho \(MN = 8\) và \(O{M^2} – O{N^2} = – 112\). Khoảng cách từ \(O\) đến đường thẳng \(MN\) bằng
Câu hỏi:
(Chuyên Vinh – 2022) Trong không gian \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} - 4x + 12y + 6z + 24 = 0\). Hai điểm \(M\), \(N\) thuộc \((S)\) sao cho \(MN = 8\) và \(O{M^2} - O{N^2} = - 112\). Khoảng cách từ \(O\) đến đường thẳng \(MN\) bằng
A. 4.
B. \(3.\)
C. \(2\sqrt 3 \).
D. \(\sqrt 3 \).
Lời giải:
Chon B
Phương trình mặt cầu … [Đọc thêm...] về (Chuyên Vinh – 2022) Trong không gian \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 4x + 12y + 6z + 24 = 0\). Hai điểm \(M\), \(N\) thuộc \((S)\) sao cho \(MN = 8\) và \(O{M^2} – O{N^2} = – 112\). Khoảng cách từ \(O\) đến đường thẳng \(MN\) bằng
(Sở Phú Thọ 2022) Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {y^2} + {\left( {z + 5} \right)^2} = 24\) cắt mặt phẳng \(\left( \alpha \right):x + y + 4 = 0\) theo giao tuyến là đường tròn \(\left( C \right)\). Điểm \(M\) thuộc \(\left( C \right)\) sao cho khoảng cách từ \(M\) đến \(A\left( {4; – 12;1} \right)\) nhỏ nhất. Tung độ của điểm \(M\) bằng
Câu hỏi:
(Sở Phú Thọ 2022) Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {y^2} + {\left( {z + 5} \right)^2} = 24\) cắt mặt phẳng \(\left( \alpha \right):x + y + 4 = 0\) theo giao tuyến là đường tròn \(\left( C \right)\). Điểm \(M\) thuộc \(\left( C \right)\) sao cho khoảng cách từ \(M\) đến \(A\left( {4; - 12;1} \right)\) nhỏ nhất. … [Đọc thêm...] về (Sở Phú Thọ 2022) Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {y^2} + {\left( {z + 5} \right)^2} = 24\) cắt mặt phẳng \(\left( \alpha \right):x + y + 4 = 0\) theo giao tuyến là đường tròn \(\left( C \right)\). Điểm \(M\) thuộc \(\left( C \right)\) sao cho khoảng cách từ \(M\) đến \(A\left( {4; – 12;1} \right)\) nhỏ nhất. Tung độ của điểm \(M\) bằng
(Chuyên Nguyễn Trãi – Hải Dương – 2022) Trong không gian với hệ trục \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} = 1\) và hai điểm \(A(3;0;0);B( – 1;1;0)\). Gọi \(M\) là điểm thuộc mặt cầu \((S)\). Tính giá trị nhỏ nhất của biểu thức \(MA + 3MB\).
Câu hỏi:
(Chuyên Nguyễn Trãi – Hải Dương – 2022) Trong không gian với hệ trục \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} = 1\) và hai điểm \(A(3;0;0);B( - 1;1;0)\). Gọi \(M\) là điểm thuộc mặt cầu \((S)\). Tính giá trị nhỏ nhất của biểu thức \(MA + 3MB\).
A. \(2\sqrt {34} \)
B. \(\sqrt {26} \)
C. 5
D. \(\sqrt {34} \)
Lời giải:
Gọi \(M(x;y;z)\) … [Đọc thêm...] về (Chuyên Nguyễn Trãi – Hải Dương – 2022) Trong không gian với hệ trục \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} = 1\) và hai điểm \(A(3;0;0);B( – 1;1;0)\). Gọi \(M\) là điểm thuộc mặt cầu \((S)\). Tính giá trị nhỏ nhất của biểu thức \(MA + 3MB\).
(THPT Hương Sơn – Hà Tĩnh – 2022) Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x + 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{1}\) và mặt cầu \(\left( S \right):{\left( {x – 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 6\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu \(\left( S \right)\). Giá trị \(\cos \widehat {AIB}\) bằng
Câu hỏi:
(THPT Hương Sơn - Hà Tĩnh - 2022) Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x + 2}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{1}\) và mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 6\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc … [Đọc thêm...] về (THPT Hương Sơn – Hà Tĩnh – 2022) Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x + 2}}{2} = \frac{{y + 1}}{{ – 3}} = \frac{z}{1}\) và mặt cầu \(\left( S \right):{\left( {x – 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 6\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu \(\left( S \right)\). Giá trị \(\cos \widehat {AIB}\) bằng
(Sở Bắc Giang 2022) Trong không gian \(Oxyz\), biết rằng không có đường thẳng nào cắt đồng thời cả 4 đường thẳng \({d_1}:\frac{{x – 3}}{{ – 1}} = \frac{{y + 3}}{1} = \frac{z}{1};{d_2}:\frac{{x – 1}}{1} = \frac{{y – 1}}{2} = \frac{z}{{ – 1}};{d_3}:\frac{x}{1} = \frac{{y + 2}}{{ – 1}} = \frac{{z + 1}}{{ – 1}};{d_4}:\left\{ {\begin{array}{*{20}{l}}{x = 6 + t}\\{y = a + 3t.{\rm{ }}}\\{z = b + t}\end{array}} \right.\)
Giá trị \(2b – a\) bằng
Câu hỏi:
(Sở Bắc Giang 2022) Trong không gian \(Oxyz\), biết rằng không có đường thẳng nào cắt đồng thời cả 4 đường thẳng \({d_1}:\frac{{x - 3}}{{ - 1}} = \frac{{y + 3}}{1} = \frac{z}{1};{d_2}:\frac{{x - 1}}{1} = \frac{{y - 1}}{2} = \frac{z}{{ - 1}};{d_3}:\frac{x}{1} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 1}}{{ - 1}};{d_4}:\left\{ {\begin{array}{*{20}{l}}{x = 6 + t}\\{y = a … [Đọc thêm...] về (Sở Bắc Giang 2022) Trong không gian \(Oxyz\), biết rằng không có đường thẳng nào cắt đồng thời cả 4 đường thẳng \({d_1}:\frac{{x – 3}}{{ – 1}} = \frac{{y + 3}}{1} = \frac{z}{1};{d_2}:\frac{{x – 1}}{1} = \frac{{y – 1}}{2} = \frac{z}{{ – 1}};{d_3}:\frac{x}{1} = \frac{{y + 2}}{{ – 1}} = \frac{{z + 1}}{{ – 1}};{d_4}:\left\{ {\begin{array}{*{20}{l}}{x = 6 + t}\\{y = a + 3t.{\rm{ }}}\\{z = b + t}\end{array}} \right.\) Giá trị \(2b – a\) bằng
(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Trong không gian tọa độ cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{{y – 2}}{2} = \frac{z}{1}\)và hai điểm \(A\left( {1; – 1;1} \right)\),\(B\left( {4;2; – 2} \right)\). Gọi \(\Delta \)là đường thẳng đi qua \(A\) và vuông góc với \(d\)sao cho khoảng cách từ điểm B đến \(\Delta \)là nhỏ nhất. Phương trình của đường thẳng \(\Delta \)là
Câu hỏi:
(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Trong không gian tọa độ cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{2} = \frac{z}{1}\)và hai điểm \(A\left( {1; - 1;1} \right)\),\(B\left( {4;2; - 2} \right)\). Gọi \(\Delta \)là đường thẳng đi qua \(A\) và vuông góc với \(d\)sao cho khoảng cách từ điểm B đến \(\Delta \)là nhỏ nhất. Phương trình của đường thẳng … [Đọc thêm...] về (THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Trong không gian tọa độ cho đường thẳng \(d:\frac{{x – 1}}{2} = \frac{{y – 2}}{2} = \frac{z}{1}\)và hai điểm \(A\left( {1; – 1;1} \right)\),\(B\left( {4;2; – 2} \right)\). Gọi \(\Delta \)là đường thẳng đi qua \(A\) và vuông góc với \(d\)sao cho khoảng cách từ điểm B đến \(\Delta \)là nhỏ nhất. Phương trình của đường thẳng \(\Delta \)là
(Chuyên Hạ Long 2022) Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(N(2;3;4)\). Một mặt cầu bất kỳ đi qua \(O\) và \(N\) cắt các trục tọa độ \(Ox,Oy,Oz\) lần lượt tại \(A,B,C \ne 0\). Biết rằng khi mặt cầu thay đổi nhưng vẫn thỏa đề bài, trọng tâm \(G\) của tam giác \(ABC\) luôn nằm trên một mặt phẳng cố định. Mặt phẳng cố định này chắn các trục tọa độ thành một tứ diện, tính thể tích của khối tứ diện đó.
Câu hỏi:
(Chuyên Hạ Long 2022) Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(N(2;3;4)\). Một mặt cầu bất kỳ đi qua \(O\) và \(N\) cắt các trục tọa độ \(Ox,Oy,Oz\) lần lượt tại \(A,B,C \ne 0\). Biết rằng khi mặt cầu thay đổi nhưng vẫn thỏa đề bài, trọng tâm \(G\) của tam giác \(ABC\) luôn nằm trên một mặt phẳng cố định. Mặt phẳng cố định này chắn các trục tọa độ thành … [Đọc thêm...] về (Chuyên Hạ Long 2022) Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(N(2;3;4)\). Một mặt cầu bất kỳ đi qua \(O\) và \(N\) cắt các trục tọa độ \(Ox,Oy,Oz\) lần lượt tại \(A,B,C \ne 0\). Biết rằng khi mặt cầu thay đổi nhưng vẫn thỏa đề bài, trọng tâm \(G\) của tam giác \(ABC\) luôn nằm trên một mặt phẳng cố định. Mặt phẳng cố định này chắn các trục tọa độ thành một tứ diện, tính thể tích của khối tứ diện đó.
(Chuyên Lam Sơn – 2022) Trong không gian với hệ trục tọa độ \(Oxyz\), cho 3 đường thẳng \(\left( {{d_1}} \right),\left( {{d_2}} \right),\left( {{d_3}} \right)\) có phương trình \(\left( {{d_1}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2{t_1}}\\{y = 1 + {t_1}}\\{z = 1 – 2{t_1}}\end{array},\left( {{d_2}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 3 + {t_2}}\\{y = – 1 + 2{t_2}}\\{z = 2 + 2{t_2}}\end{array},\left( {{d_3}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 4 + 2{t_3}}\\{y = 4 – 2{t_3}}\\{z = 1 + {t_3}}\end{array}} \right.} \right.} \right.\) tiếp xúc với 3 đường thẳng đó. Giá trị nhỏ nhất của \(R\) gần số nào nhất trong các số sau:
Câu hỏi:
(Chuyên Lam Sơn – 2022) Trong không gian với hệ trục tọa độ \(Oxyz\), cho 3 đường thẳng \(\left( {{d_1}} \right),\left( {{d_2}} \right),\left( {{d_3}} \right)\) có phương trình \(\left( {{d_1}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2{t_1}}\\{y = 1 + {t_1}}\\{z = 1 - 2{t_1}}\end{array},\left( {{d_2}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 3 + … [Đọc thêm...] về (Chuyên Lam Sơn – 2022) Trong không gian với hệ trục tọa độ \(Oxyz\), cho 3 đường thẳng \(\left( {{d_1}} \right),\left( {{d_2}} \right),\left( {{d_3}} \right)\) có phương trình \(\left( {{d_1}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2{t_1}}\\{y = 1 + {t_1}}\\{z = 1 – 2{t_1}}\end{array},\left( {{d_2}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 3 + {t_2}}\\{y = – 1 + 2{t_2}}\\{z = 2 + 2{t_2}}\end{array},\left( {{d_3}} \right):\left\{ {\begin{array}{*{20}{l}}{x = 4 + 2{t_3}}\\{y = 4 – 2{t_3}}\\{z = 1 + {t_3}}\end{array}} \right.} \right.} \right.\) tiếp xúc với 3 đường thẳng đó. Giá trị nhỏ nhất của \(R\) gần số nào nhất trong các số sau:
