DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {(y + 1)^2} + {z^2} = 9\); điểm \(A\left( {2\,;\, - 1\,;\,8} \right)\); mặt phẳng \(\left( P \right):\left( {a + 1} … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {(y + 1)^2} + {z^2} = 9\); điểm \(A\left( {2\,;\, – 1\,;\,8} \right)\); mặt phẳng \(\left( P \right):\left( {a + 1} \right)x + \left( {2b – 2} \right)y + \left( { – a + b – 2} \right)z + c = 0\)\(\left( {a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}} \right)\) tiếp xúc với mặt cầu \(\left( S \right)\). Gọi khoảng cách lớn nhất và nhỏ nhất từ \(A\) đến mặt phẳng \(\left( P \right)\) lần lượt là \(\alpha \) và \(\beta \). Giá trị của biểu thức \(T = 2\alpha – 5\beta \) bằng:
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {(y + 1)^2} + {\left( {z – 2} \right)^2} = 1\). Xét điểm \(M\) di động trên đường thẳng \(\left( d \right):\frac{{x – 1}}{2} = \frac{{y – 1}}{1} = \frac{{z + 2}}{{ – 2}}\). Qua \(M\) vẽ đường thẳng cắt mặt cầu \(\left( S \right)\) tại 2 điểm \(A,\,B\). Dựng mặt cầu tâm \(M\) bán kính \(MA.MB\). Khi đường tròn giao tuyến của 2 mặt cầu có diện tích nhỏ nhất thì \(M\)có tọa độ \(M\left( {a,b,c} \right)\). Giá trị của \(P = – a + b + c\) bằng
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {(y + 1)^2} + {\left( {z - 2} \right)^2} = 1\). Xét điểm \(M\) di động trên đường thẳng \(\left( d \right):\frac{{x - 1}}{2} = … [Đọc thêm...] về Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {(y + 1)^2} + {\left( {z – 2} \right)^2} = 1\). Xét điểm \(M\) di động trên đường thẳng \(\left( d \right):\frac{{x – 1}}{2} = \frac{{y – 1}}{1} = \frac{{z + 2}}{{ – 2}}\). Qua \(M\) vẽ đường thẳng cắt mặt cầu \(\left( S \right)\) tại 2 điểm \(A,\,B\). Dựng mặt cầu tâm \(M\) bán kính \(MA.MB\). Khi đường tròn giao tuyến của 2 mặt cầu có diện tích nhỏ nhất thì \(M\)có tọa độ \(M\left( {a,b,c} \right)\). Giá trị của \(P = – a + b + c\) bằng
Trong không gian \(Oxyz\), cho \(A\left( {1;\, – 3;\, – 2} \right),\,B\left( {5;\,1;\,0} \right)\). Gọi \(\left( S \right)\) là mặt cầu đường kính \(AB\). Trong các hình chóp đều có đỉnh \(A\) nội tiếp trong mặt cầu \(\left( S \right)\), gọi \(A.MNPQ\) là hình chóp có thể tích lớn nhất. Phương trình mặt cầu tâm \(B\) và tiếp xúc với mặt phẳng \(\left( {MNPQ} \right)\) là
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian \(Oxyz\), cho \(A\left( {1;\, - 3;\, - 2} \right),\,B\left( {5;\,1;\,0} \right)\). Gọi \(\left( S \right)\) là mặt cầu đường kính \(AB\). Trong các hình chóp đều có đỉnh \(A\) nội tiếp trong mặt cầu … [Đọc thêm...] về Trong không gian \(Oxyz\), cho \(A\left( {1;\, – 3;\, – 2} \right),\,B\left( {5;\,1;\,0} \right)\). Gọi \(\left( S \right)\) là mặt cầu đường kính \(AB\). Trong các hình chóp đều có đỉnh \(A\) nội tiếp trong mặt cầu \(\left( S \right)\), gọi \(A.MNPQ\) là hình chóp có thể tích lớn nhất. Phương trình mặt cầu tâm \(B\) và tiếp xúc với mặt phẳng \(\left( {MNPQ} \right)\) là
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính \(R = 3\) và \(\left( N \right)\) là một khối nón nội tiếp \(\left( S \right)\), có thể tích \(V\) và có đáy nằm trong mặt phẳng \(\left( \beta \right)\). Biết rằng \(\left( \beta \right)\) song song với \(\left( \alpha \right):x + 2y + 2z = 0\). Viết phương trình mặt phẳng \(\left( \beta \right)\) khi \(V\) đạt giá trị lớn nhất.
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính \(R = 3\) và \(\left( N \right)\) là một khối nón nội tiếp \(\left( S \right)\), có thể tích \(V\) và có đáy nằm trong mặt … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính \(R = 3\) và \(\left( N \right)\) là một khối nón nội tiếp \(\left( S \right)\), có thể tích \(V\) và có đáy nằm trong mặt phẳng \(\left( \beta \right)\). Biết rằng \(\left( \beta \right)\) song song với \(\left( \alpha \right):x + 2y + 2z = 0\). Viết phương trình mặt phẳng \(\left( \beta \right)\) khi \(V\) đạt giá trị lớn nhất.
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 48\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; – 4} \right)\), \(B\left( {2;0;0} \right)\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\). Khối nón \(\left( N \right)\) có đỉnh là tâm của \(\left( S \right)\), đường tròn đáy là \(\left( C \right)\) có thể tích lớn nhất bằng:
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 48\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm … [Đọc thêm...] về Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 48\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; – 4} \right)\), \(B\left( {2;0;0} \right)\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\). Khối nón \(\left( N \right)\) có đỉnh là tâm của \(\left( S \right)\), đường tròn đáy là \(\left( C \right)\) có thể tích lớn nhất bằng:
. Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 27\). Gọi \(\left( P \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0\,;\,0\,;\, – 4} \right)\), \(B\left( {2\,;\,0\,;\,0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm của mặt cầu \(\left( S \right)\) và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất. Biết rằng \(\left( P \right)\) có dạng \(\left( P \right):ax + by – z + c = 0\). Khi đó \(2a + b + c\) bằng
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
. Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 27\). Gọi \(\left( P \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0\,;\,0\,;\, - 4} … [Đọc thêm...] về . Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 27\). Gọi \(\left( P \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0\,;\,0\,;\, – 4} \right)\), \(B\left( {2\,;\,0\,;\,0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm của mặt cầu \(\left( S \right)\) và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất. Biết rằng \(\left( P \right)\) có dạng \(\left( P \right):ax + by – z + c = 0\). Khi đó \(2a + b + c\) bằng
. Trong không gian với hệ tọa độ Oxyz, cho mặt cầucó phương trình \({\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 12\) và mặt phẳng \(\left( P \right):2x + 2y – z – 3 = 0\). Viết phương trình mặt phẳng song song vớivà cắttheo thiết diện là đường trònsao cho khối nóncó đỉnh là tâm I của mặt cầuvà đáy là đường tròncó thể tích lớn nhất.
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
. Trong không gian với hệ tọa độ Oxyz, cho mặt cầucó phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 12\) và mặt phẳng \(\left( P \right):2x + 2y - z - 3 = 0\). … [Đọc thêm...] về . Trong không gian với hệ tọa độ Oxyz, cho mặt cầucó phương trình \({\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 12\) và mặt phẳng \(\left( P \right):2x + 2y – z – 3 = 0\). Viết phương trình mặt phẳng song song vớivà cắttheo thiết diện là đường trònsao cho khối nóncó đỉnh là tâm I của mặt cầuvà đáy là đường tròncó thể tích lớn nhất.
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) có phương trình\(\,{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\) có tâm là \(I\) và bán kính \(R\). Xét mặt phẳng \(\left( P \right)\) thay đổi cắt mặt cầu theo giao tuyến là đường tròn \(\left( C \right)\). Hình nón \(\left( N \right)\) có đỉnh \(A\) nằm trên mặt cầu, có đáy là đường tròn \(\left( C \right)\) và có chiều cao \(h\). Thể tích khối nón được tạo nên bởi \(\left( N \right)\) có giá trị lớn nhất thì \(h\) thuộc khoảng nào sau đây?
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) có phương trình\(\,{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\) có tâm là \(I\) và bán kính … [Đọc thêm...] về Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\) có phương trình\(\,{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 25\) có tâm là \(I\) và bán kính \(R\). Xét mặt phẳng \(\left( P \right)\) thay đổi cắt mặt cầu theo giao tuyến là đường tròn \(\left( C \right)\). Hình nón \(\left( N \right)\) có đỉnh \(A\) nằm trên mặt cầu, có đáy là đường tròn \(\left( C \right)\) và có chiều cao \(h\). Thể tích khối nón được tạo nên bởi \(\left( N \right)\) có giá trị lớn nhất thì \(h\) thuộc khoảng nào sau đây?
Cho hình lăng trụ đứng \(ABC.A’B’C’\)có \(AB = 4\),\(\widehat {ACB} = 150^\circ \). Ba điểm\(A,B,C\) thay đổi nhưng luôn thuộc mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} + 8x – 6y + 4z + 4 = 0\); ba điểm \(A’,B’,C’\) luôn thuộc \(\left( P \right):\)\(x + 2y + 2{\rm{z}} + 23 = 0\). Thể tích lớn nhất của tứ diện \(ABC’B’\) bằng
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Cho hình lăng trụ đứng \(ABC.A'B'C'\)có \(AB = 4\),\(\widehat {ACB} = 150^\circ \). Ba điểm\(A,B,C\) thay đổi nhưng luôn thuộc mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} + 8x - 6y + 4z + 4 = 0\); ba điểm … [Đọc thêm...] về Cho hình lăng trụ đứng \(ABC.A’B’C’\)có \(AB = 4\),\(\widehat {ACB} = 150^\circ \). Ba điểm\(A,B,C\) thay đổi nhưng luôn thuộc mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} + 8x – 6y + 4z + 4 = 0\); ba điểm \(A’,B’,C’\) luôn thuộc \(\left( P \right):\)\(x + 2y + 2{\rm{z}} + 23 = 0\). Thể tích lớn nhất của tứ diện \(ABC’B’\) bằng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; – 2;1} \right),\,B\left( {3; – 4;5} \right)\). Một hình trụ \(\left( T \right)\) nội tiếp trong mặt cầu đường kính \(AB\) đồng thời nhận \(AB\) làm trục của hình trụ. Gọi \(M\) và \(N\)lần lượt là tâm các đường tròn đáy của \(\left( T \right)\) \(\left( M \right.\) nằm giữa\(\left. {A,N} \right)\). Khi thiết diện qua trục của \(\left( T \right)\) có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm \(M\) của \(\left( T \right)\) có dạng \(x + by + 2z + d = 0\). Giá trị của \(b – d\) bằng
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay)
===============
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; - 2;1} \right),\,B\left( {3; - 4;5} \right)\). Một hình trụ \(\left( T \right)\) nội tiếp trong mặt cầu đường kính \(AB\) đồng thời nhận \(AB\) làm trục của hình … [Đọc thêm...] về Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1; – 2;1} \right),\,B\left( {3; – 4;5} \right)\). Một hình trụ \(\left( T \right)\) nội tiếp trong mặt cầu đường kính \(AB\) đồng thời nhận \(AB\) làm trục của hình trụ. Gọi \(M\) và \(N\)lần lượt là tâm các đường tròn đáy của \(\left( T \right)\) \(\left( M \right.\) nằm giữa\(\left. {A,N} \right)\). Khi thiết diện qua trục của \(\left( T \right)\) có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm \(M\) của \(\left( T \right)\) có dạng \(x + by + 2z + d = 0\). Giá trị của \(b – d\) bằng
