• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 12 / Bài tập luyện tập ÔN CHƯƠNG 3 TÍCH PHÂN VÀ ỨNG DỤNG TÍCH PHÂN – 2023

Bài tập luyện tập ÔN CHƯƠNG 3 TÍCH PHÂN VÀ ỨNG DỤNG TÍCH PHÂN – 2023

Ngày 11/01/2023 Thuộc chủ đề:Toán lớp 12 Tag với:Chuong 3 giai tich 12, On tap nguyen ham tich phan

Bài tập luyện tập ÔN CHƯƠNG 3 TÍCH PHÂN VÀ ỨNG DỤNG TÍCH PHÂN – 2024
==========

booktoan.com chia sẻ Bài tập luyện tập ÔN CHƯƠNG 3 TÍCH PHÂN VÀ ỨNG DỤNG TÍCH PHÂN – 2023. Đề có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân. Chúc các em thành công và đạt kết quả cao trong học toán 12 năm học 2022 – 2023.
NGUỒN: BOOKTOAN.COM
———– xem file de thi —

============= xem online file docx =========

===========
== LINK DOWNLOAD ===3

DOWNLOAD
Toán lớp 12 – Sách Toán – Học toán (booktoan.com)

======****=======
Toán lớp 12 – Sách Toán – Học toán (booktoan.com)

Bài liên quan:

  1. Với mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f’\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng

  2. Cho hàm số bậc nhất \(f\left( x \right)\) có đồ thị như hình vẽ bên dưới. Tích phân \(\int\limits_0^4 {f\left( x \right).dx} \) bằng

  3. Cho \(F\left( x \right) = \frac{1}{{2{x^2}}}\) là một nguyên hàm của hàm số \(\frac{{f\left( x \right)}}{x}\). Gọi \(G\left( x \right)\) là một nguyên hàm của hàm số \(f’\left( x \right)\ln x\) và \(G\left( 1 \right) = – \frac{1}{2}\). Phương trình \(G\left( {2{x^2} – 1} \right) = m\) có 4 nghiệm phân biệt khi \(m\) thuộc khoảng nào?

  4. Cho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 – 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a – 3b + 2c\).

  5. Biết \(I = \int\limits_1^3 {\frac{{3 + \ln x}}{{{{\left( {x + 1} \right)}^2}}}\,} {\rm{d}}x\)\( = a\left( {1 + \ln 3} \right) – b\ln 2\), \(\left( {a\,,\,b \in \mathbb{Q}} \right)\). Giá trị của biểu thức

    \(T = {a^2} + {b^2}\) là:

  6. Tính tích phân \(\int\limits_0^1 {\max \left\{ {{e^x},{e^{1 – 2x}}} \right\}} dx\).

  7. Biết \(\int\limits_0^\pi {\left( {3x + 2} \right){{\cos }^2}x\,{\rm{d}}x} = \frac{a}{b}{\pi ^2} + c\pi \) (với \(a,\,b,\,c\) là các số tự nhiên, \(\frac{a}{b}\) là phân số tối giản). Giá trị của \(a + b + c\)bằng

  8. Biết \(I = \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right)} {\rm{d}}x = a\ln 5 + b\ln 3 + c\) trong đó \(a\), \(b\), \(c\) là các số nguyên .

    Tính giá trị của biểu thức \(T = a + b + c\).

  9. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) thỏa mãn \(f\left( {{x^3} + {x^2} + 2023} \right) = x + 1\) với mọi \(x \in \mathbb{R}.\) Tích phân \(\int\limits_{2023}^{2025} {f\left( x \right){\rm{d}}x} \) bằng

  10. Biết tích phân \({\rm{I}} = \int\limits_1^2 {\frac{{\ln {{\left( {2{x^2} + 1} \right)}^x} + 2023x}}{{\ln \left[ {{{\left( {2e{x^2} + e} \right)}^{2{x^2} + 1}}} \right]}}} {\rm{dx = }}\,\,a{\rm{.ln3 + }}\,b{\rm{.ln}}\left( {\frac{{\ln 9e}}{{\ln 3e}}} \right)\) . Với \(a,\,b\, \in \mathbb{Q}\) và \(a,\,b\) là các phân số tối giản. Tính \(P = 8a + 4b\)

  11. Biết \(I = \int\limits_1^{\sqrt[4]{3}} {\frac{1}{{x({x^4} + 1)}}} dx = \frac{1}{a}\ln \frac{b}{c}\) với \(a,{\rm{ }}b,{\rm{ }}c \in {\mathbb{N}^ * }\) và \(\frac{b}{c}\) là phân số tối giản. Tính \(T = ab

    C.\)

  12. Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 ,\) \(f\left( x \right) > 0,\) \(\forall x \in \mathbb{R}\) và \(f\left( x \right).f’\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\) \(\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng

  13. Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\).

  14. Tích phân \(\int\limits_{ – 1}^1 {\left| x \right|.dx} \) bằng

  15. Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 – 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { – 2} \right) = – 10\). Khi đó \(F\left( 3 \right)\) bằng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • HƯỚNG DẪN ÔN THI THPTQG MÔN TOÁN – CHƯƠNG-TRÌNH-MỚI 2025
  • Phát triển các câu tương tự Đề TOÁN THAM KHẢO 2024
  • Học toán lớp 12
  • Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
  • Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit
  • Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
  • Chương 1: Khối Đa Diện
  • Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
  • Chương 3: Phương Pháp Tọa Độ Trong Không Gian

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.