• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 12 / Lý thuyết Tích phân

Lý thuyết Tích phân

Ngày 17/01/2018 Thuộc chủ đề:Toán lớp 12 Tag với:Tích phân

I. Định nghĩa

Lý thuyết Tích phân 1

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a;b] , hiệu số F(b) – F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a;b] của hàm số f(x)).

Kí hiệu là : \(I=\int_a^b f (x)dx\)

Vậy ta có :\(\int_a^b f (x)dx = F(x)|_a^b= F(b) – F(a)\)

Ký hiệu: $\int_{a}^{b}f(x)dx$ với a là cận dưới, b là cận trên, f(x)dx là biểu thức dưới dấu tích phân, f(x) là hàm số dưới dấu tích phân.

* Công thức tổng quát

$\int_{a}^{b}f(x)dx= F(x)|_a^b=F(b)-F(a)$

Chú ý:

  • $\int_{a}^{a}f(x)dx=0$
  • $\int_{a}^{b}f(x)dx=-\int_{b}^{a}f(x)dx$

*   Ý nghĩa hình học của tích phân

Ta nói $\int_{a}^{b}f(x)dx$ là diện tích hình thang cong giới hạn bởi đồ thị của f(x), trục Ox và hai đường thẳng $x=a$ và $x=b$.

$S=\int_{a}^{b}f(x)dx$

Bất đẳng thức (phần kiến thức bổ sung)

Nếu f(x) liên tục và không âm trên đoạn [a;b] thì : \(\int_a^b f (x)dx \ge 0\)

Từ đó ta có:

Nếu g(x), f(x) liên tục trên đoạn [a;b] và 0 ≤ g(x) ≤ f(x), ∀ x ∈ [a;b] thì

\(\int_a^b g (x)dx \le \int_a^b f (x)dx\). Dấu ” = ” xảy ra khi và chỉ khi g(x) = f(x).

Suy ra: Nếu f(x) liên tục trên đoạn [a;b] và m ≤ f(x) ≤ M, ∀ x ∈ [a;b] thì

\(m(b – a) \le \int_a^b f (x)dx \le M(b – a)\)

II. Tính chất của tích phân

Tính chất 1

$\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx$

Tính chất 2

$\int_{a}^{b}(f(x)\pm g(x))dx=\int_{a}^{b}f(x)dx\pm \int_{a}^{b}g(x)dx$

Tính chất 3

$\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx$ Với a<c<b

Xem: Tính tích phân bằng bảng nguyên hàm và phân tích

III. Phương pháp tính tích phân

1. Phương pháp đổi biến số

Định lí. Cho hàm số f(x) liên tục trên [a;b]. Giả sử hàm số x = φ(t) có đạo hàm liên tục trên đoạn [α;β] sao cho φ(α)=a, φ(β)=b và a ≤ φ(t) ≤ b , ∀t ∈ [α;β] . Khi đó:

\(\int_a^b f (x)dx = \int_\alpha ^\beta  f (\psi (t))\psi ‘(t)dt\)

Chú ý. Có thể dử dụng phép biến đổi số ở dạng sau:

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử hàm số u=u(x) có đạo hàm liên tục trên đoạn [a;b] sao cho α ≤ u(x) ≤ β, ∀ x∈ [a;b]. Nếu f(x) =g[u(x)].u’(x) ∀ x∈ [a;b], trong đó g(u) liên tục trên đoạn [α;β] thì:

\(\int_a^b f (xdx) = \int_{u(a)}^{u(b)} g (u)du\)

Xem: Tính tích phân bằng phương pháp đổi biến số

 

2. Phương pháp tính tích phân từng phần

Định lí. Nếu u =u(x) và v=v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a;b], thì :

\(\int_a^b u (x)v'(x)dx = [u(x)v(x)]|_a^b – \int_a^b {u’} (x)v(x)dx\)

hay \(\int_a^b u dv = uv|_a^b – \int_a^b v du\)

Xem: Tính tích phân bằng phương pháp từng phần

========

Bài liên quan:

  1. CHUYÊN ĐỀ TOÁN 12 – TÍCH PHÂN
  2. Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 ,\) \(f\left( x \right) > 0,\) \(\forall x \in \mathbb{R}\) và \(f\left( x \right).f’\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\) \(\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng

  3. Biết\(I = \int\limits_0^{\frac{\pi }{2}} {\frac{{{{\sin }^{2023}}x}}{{{{\sin }^{2023}}x + {{\cos }^{2023}}x}}{\rm{d}}x} = a\frac{\pi }{4} + b\) với \(a,b \in \mathbb{Z}\). Giá trị của biểu thức \(T = {a^2} + {b^2}\) bằng

  4. Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} – 2{\rm{ khi }}x \le 1\\2x – 1{\rm{ khi }}x > 1\end{array} \right.\). Tính \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( {1 – \sin x} \right)\cos x{\rm{d}}x} \).

  5. Giả sử tích phân \(I = \int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{{x^2} + \cos x}}{{1 + {3^x}}}dx} = a{\pi ^3} + b\pi + c\), trong đó \(a,b,c \in \mathbb{Q}\). Tính \(S = 8a + 4b + c\)

  6. Bên trong hình vuông cạnh \(a\), dựng hình sao bốn cánh đều như hình vẽ sau (các kích thước cần thiết cho như ở trong hình).

  7. Tính \(\int\limits_1^{\frac{{\sqrt 6 + \sqrt 2 }}{2}} {\frac{{ – 4{x^4} + {x^2} – 3}}{{{x^4} + 1}}{\rm{d}}x} = \frac{{\sqrt 2 }}{8}\left( {a\sqrt 3 + b + c\pi } \right) + 4\), với \(a,b,c\) là các số nguyên. Khi đó \(a + {b^2} + {c^4}\) bằng

  8. Biết \(\int\limits_0^1 {\sqrt {\frac{{2 + x}}{{2 – x}}} dx} = \frac{\pi }{a} + b\sqrt 3 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}\). Tính \(P = a + b +

    C.\)

  9. Với mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f’\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng

  10. Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2} + 2x + m\,\,khi\,\,x \ge 1\\5 – 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\) (\(m\) là tham số thực). Biết rằng \(f\left( x \right)\) có nguyên hàm trên \(\mathbb{R}\) là \(F\left( x \right)\) thỏa mãn \(F\left( { – 2} \right) = – 10\). Khi đó \(F\left( 3 \right)\) bằng

  11. Tích phân \(\int\limits_{ – 1}^1 {\left| x \right|.dx} \) bằng

  12. Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + \cos x} \right)}}{{{{\cos }^2}x}}{\rm{d}}x = a\pi + b\ln 2} \) với \(a,\,b \in \mathbb{Q},\,\,a,b\)là các phân số tối giản. Tính giá trị biểu thức \(P = 4a + 2b\).

  13. Biết \(I = \int\limits_1^{\sqrt[4]{3}} {\frac{1}{{x({x^4} + 1)}}} dx = \frac{1}{a}\ln \frac{b}{c}\) với \(a,{\rm{ }}b,{\rm{ }}c \in {\mathbb{N}^ * }\) và \(\frac{b}{c}\) là phân số tối giản. Tính \(T = ab

    C.\)

  14. Biết tích phân \({\rm{I}} = \int\limits_1^2 {\frac{{\ln {{\left( {2{x^2} + 1} \right)}^x} + 2023x}}{{\ln \left[ {{{\left( {2e{x^2} + e} \right)}^{2{x^2} + 1}}} \right]}}} {\rm{dx = }}\,\,a{\rm{.ln3 + }}\,b{\rm{.ln}}\left( {\frac{{\ln 9e}}{{\ln 3e}}} \right)\) . Với \(a,\,b\, \in \mathbb{Q}\) và \(a,\,b\) là các phân số tối giản. Tính \(P = 8a + 4b\)

  15. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) thỏa mãn \(f\left( {{x^3} + {x^2} + 2023} \right) = x + 1\) với mọi \(x \in \mathbb{R}.\) Tích phân \(\int\limits_{2023}^{2025} {f\left( x \right){\rm{d}}x} \) bằng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • HƯỚNG DẪN ÔN THI THPTQG MÔN TOÁN – CHƯƠNG-TRÌNH-MỚI 2025
  • Phát triển các câu tương tự Đề TOÁN THAM KHẢO 2024
  • Học toán lớp 12
  • Chương 1: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số
  • Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit
  • Chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng
  • Chương 1: Khối Đa Diện
  • Chương 2: Mặt Nón, Mặt Trụ, Mặt Cầu
  • Chương 3: Phương Pháp Tọa Độ Trong Không Gian

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.