• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Trong không gian \(Oxyz,\) cho mặt cầu \((S)\) có tâm là điểm \(M(2\;;\;1\;;\; – 3)\) và tiếp xúc với mặt phẳng \((Oxy)\). Viết phương trình mặt cầu \((S)\).

Đăng ngày: 19/03/2022 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem mat cau

adsense

Câu hỏi:
<p>Trong không gian (Oxyz,) cho mặt cầu ((S)) có tâm là điểm (M(2;;;1;;; - 3)) và tiếp xúc với mặt phẳng ((Oxy)). Viết phương trình mặt cầu ((S)).</p> 1

Trong không gian \(Oxyz,\) cho mặt cầu \((S)\) có tâm là điểm \(M(2\;;\;1\;;\; – 3)\) và tiếp xúc với mặt phẳng \((Oxy)\). Viết phương trình mặt cầu \((S)\).

A. \({(x – 2)^2} + {(y – 1)^2} + {(z + 3)^2} = 9\).

B. \({(x + 2)^2} + {(y + 1)^2} + {(z – 3)^2} = 9\).

C. \({(x – 2)^2} + {(y – 1)^2} + {(z + 3)^2} = 5\).

adsense

D. \({(x + 2)^2} + {(y + 1)^2} + {(z – 3)^2} = 5\).

Lời giải

Mặt cầu \((S)\) có tâm là điểm \(M(2\;;\;1\;;\; – 3)\) và tiếp xúc với mặt phẳng \((Oxy)\) thì có bán kính \(R = \left| {{z_M}} \right| = \left| { – 3} \right| = 3\). Do đó, mặt cầu \((S)\) có phương trình là \({(x – 2)^2} + {(y – 1)^2} + {(z + 3)^2} = 9\).

====================
Thuộc chủ đề: Trắc nghiệm Hình học OXYZ

Thuộc chủ đề:Trắc nghiệm Hình học OXYZ Tag với:Trac nghiem mat cau

Bài liên quan:

  1. Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {0\;;\;8\;;\;2} \right)\) và mặt cầu có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\)và điểm \(B\left( {9\;;\; – 7\;;\;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) và tiếp xúc với \(\left( S \right)\)sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) lớn nhất. Giả sử \(\overrightarrow n = \left( {1\;;\;m\;;\;n} \right)\)là một véc tơ pháp tuyến của \(\left( P \right)\), hãy tính tích \(m.n\) biết \(m\,,\,n\) là các số nguyên.

  2. Trong không gian \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(A\left( {1;2;1} \right)\), \({R_1} = 2\) và mặt cầu \(\left( {{S_2}} \right)\) có tâm \(B\left( { – 2; – 2;1} \right)\), \({R_1} = 3\). Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) đồng thời \(\left( P \right)\) cách điểm \(M\left( {7;10;1} \right)\) một khoảng lớn nhất.

  3. Cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z + 5} \right)^2} = 9\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y = 2 + t\\z = – 1 – 3t\end{array} \right.\). Gọi \(A\) là một điểm di động trên mặt cầu \(\left( S \right)\). Biết rằng có 2 mặt phẳng \(\left( P \right)\), \(\left( {P’} \right)\) cùng chứa \(d\) và tiếp xúc với mặt \(\left( S \right)\) lần lượt tại \(B,\,\,C\). Diện tích tam giác \(ABC\) lớn nhất bằng

  4. Câu 18: Trong không gian \(Oxyz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x + 4y + 1 = 0\)và đường thẳng \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 + t\\z = 2 – t\end{array} \right.\). Số điểm chung của đường thẳng d và mặt cầu \(\left( S \right)\) là

  5. Cho mặt cầu \(\left( S \right)\):\({x^2} + {y^2} + {z^2} – 4x + 2y – 2z – 3 = 0\) và điểm \(A\left( {5;3;1} \right)\). Một đường thẳng \(d\) thay đổi luôn đi qua \(A\) và cắt mặt cầu tại hai điểm phân biệt \(M,N\), (\(M\)nằm giữa \(A\)và \(N\)). Tính giá trị nhỏ nhất của \(S = 8AM + AN\).

  6. Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(I\left( {1\,; – \,2\,;\,3} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z + 5 = 0\). Mặt cầu \(\left( S \right)\) có tâm \(I\) cắt mặt phẳng \(\left( P \right)\) theo một đường tròn có chu vi \(12\pi \) có phương trình.

  7. Trong không gian với hệ toạ độ \(Oxyz\)cho các phương trình, phương trình nào không phải là phương trình mặt cầu?

  8. Trong không gian với hệ toạ độ \(Oxyz\)cho phương trình của mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {z^2} + {\left( {y – 2} \right)^2} = 5\). Toạ độ tâm \(I\)của mặt cầu là:

  9. Trong không gian \(Oxyz\) cho mặt cầu \(\left( {{S_1}} \right)\): \({x^2} + {y^2} + {z^2} = 1\). Từ điểm \(S\) bất kỳ trên mặt cầu \(\left( {{S_1}} \right)\) kẻ ba đường thẳng cắt mặt cầu tại các điểm \(A\), \(B\), \(C\) sao cho \(SA = SB = SC\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Khi thể tích của khối chóp \(S.ABC\) lớn nhất, viết phương trình mặt cầu \(\left( {{S_2}} \right)\) đi qua tâm của \(\left( {{S_1}} \right)\)và tiếp xúc với \(\left( {ABC} \right)\).

  10. Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(I\left( {3\,;\, – 4\,;\,1} \right)\). Viết phương trình mặt cầu \(\left( S \right)\) tâm \(I\) cắt trục \(Oz\) tại hai điểm \(A,B\) sao cho tam giác \(IAB\) có diện tích bằng 15.

  11. Trong không gian \({\rm{O}}xyz\), cho mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} – 2x – 4y + 8z – 2 = 0\). Mặt phẳng \(\left( P \right)\) đi qua tâm \(I\)và cắt mặt cầu theo giao tuyến là một đường tròn. Tính bán kính của đường tròn đó

  12. Trong không gian \(Oxyz\), cho hai mặt cầu \(\left( S \right):\,\,{\left( {x – 3} \right)^2} + {y^2} + {z^2} = 9\) và \(\left( {S’} \right):\,\,{\left( {x + 2} \right)^2} + {y^2} + {z^2} = 4\). Khẳng định nào sau đây là đúng?

  13. Trong không gian \(Oxyz\). Có bao nhiêu giá trị nguyên của \(m \in \left( { – 25;15} \right)\) thì phương trình \({x^2} + {y^2} + {z^2} – 2x + 4y + 2(m + 1)z – 20m = 0\) là phương trình mặt cầu.

  14. Câu 49: Trong không gian \(Oxyz\), cho hai điểm \(B\left( {1\,;\,2\,;\,3} \right)\) và \(A\left( { – 1\,;\,2\,;\, – 1} \right)\). Viết phương trình mặt cầu đường kính \(AB\)

  15. Câu 20: Trong không gian \(Oxyz\), cho hai điểm \(A\left( { – 1;2;1} \right)\).và \(B\left( {1;4;3} \right)\). Phương trình mặt cầu nhận \(AB\)làm đường kính là

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.