• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

_Trắc nghiệm Hình học OXYZ

[4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {(z – 3)^2} = 8\) và hai điểm \(A\left( {4;4;3} \right)\), \(B\left( {1;1;1} \right)\). Tập hợp tất cả các điểm \(M\) thuộc \(\left( S \right)\) sao cho \(MA = 2MB\) là một đường tròn \(\left( C \right)\). Bán kính của \(\left( C \right)\) bằng

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {(z - 3)^2} = 8\) và hai điểm \(A\left( {4;4;3} \right)\), \(B\left( {1;1;1} \right)\). Tập hợp tất cả các điểm \(M\) thuộc \(\left( S \right)\) sao cho \(MA = 2MB\) là một đường tròn \(\left( C \right)\). Bán kính của \(\left( C \right)\) bằng A.\(\sqrt 7 \). B. \(\sqrt 6 \). C. … [Đọc thêm...] về[4] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {(z – 3)^2} = 8\) và hai điểm \(A\left( {4;4;3} \right)\), \(B\left( {1;1;1} \right)\). Tập hợp tất cả các điểm \(M\) thuộc \(\left( S \right)\) sao cho \(MA = 2MB\) là một đường tròn \(\left( C \right)\). Bán kính của \(\left( C \right)\) bằng

[4] Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;\,3;\, – 5} \right)\), \(B\left( {1;\,1;\, – 5} \right)\), \(C\left( {4;\,3;\, – 1} \right)\) và mặt cầu\(\left( {{S_m}} \right):\) \({x^2} + {y^2} + {z^2} + \left( {m – 2} \right)x + 4y + \left( {m – 2} \right)z – 3 = 0\) (\(m\) là tham số thực). Gọi \(\left( T \right)\) là tập hợp các điểm cố định mà mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua với mọi số thực \(m\) và \(M\) là một điểm di động trên \(\left( T \right)\) sao cho thể tích tứ diện \(MABC\) đạt giá trị lớn nhất \({V_{\max }}\). Giá trị \({V_{\max }}\) bằng

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;\,3;\, - 5} \right)\), \(B\left( {1;\,1;\, - 5} \right)\), \(C\left( {4;\,3;\, - 1} \right)\) và mặt cầu\(\left( {{S_m}} \right):\) \({x^2} + {y^2} + {z^2} + \left( {m - 2} \right)x + 4y + \left( {m - 2} \right)z - 3 = 0\) (\(m\) là tham số thực). Gọi \(\left( T \right)\) là tập hợp các điểm cố định mà mặt cầu \(\left( … [Đọc thêm...] về[4] Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;\,3;\, – 5} \right)\), \(B\left( {1;\,1;\, – 5} \right)\), \(C\left( {4;\,3;\, – 1} \right)\) và mặt cầu\(\left( {{S_m}} \right):\) \({x^2} + {y^2} + {z^2} + \left( {m – 2} \right)x + 4y + \left( {m – 2} \right)z – 3 = 0\) (\(m\) là tham số thực). Gọi \(\left( T \right)\) là tập hợp các điểm cố định mà mặt cầu \(\left( {{S_m}} \right)\) luôn đi qua với mọi số thực \(m\) và \(M\) là một điểm di động trên \(\left( T \right)\) sao cho thể tích tứ diện \(MABC\) đạt giá trị lớn nhất \({V_{\max }}\). Giá trị \({V_{\max }}\) bằng

[4] Trong không gian \(Oxyz\), cho đường thẳng \(\Delta \) đi qua \(E\left( {1 + 3a; – 2;2 + 3a} \right)\) và có một vectơ chỉ phương \(\overrightarrow u = \left( {a;1;a + 1} \right)\). Biết khi \(a\) thay đổi luôn tồn tại một mặt cầu \(\left( S \right)\) cố định có tâm \(I\left( {m;n;p} \right)\) bán kính \(R\) đi qua điểm \(M\left( {1;1;1} \right)\) và tiếp xúc với đường thẳng \(\Delta \). Một khối nón \(\left( N \right)\) có đỉnh \(I\) và đường tròn đáy của khối nón nằm trên mặt cầu \(\left( S \right)\). Thể tích lớn nhất của khối nón \(\left( N \right)\) là \(\max {V_{\left( N \right)}} = \frac{{q\pi }}{3}\). Khi đó tổng \(m + n + p + q\) bằng

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian \(Oxyz\), cho đường thẳng \(\Delta \) đi qua \(E\left( {1 + 3a; - 2;2 + 3a} \right)\) và có một vectơ chỉ phương \(\overrightarrow u = \left( {a;1;a + 1} \right)\). Biết khi \(a\) thay đổi luôn tồn tại một mặt cầu \(\left( S \right)\) cố định có tâm \(I\left( {m;n;p} \right)\) bán kính \(R\) đi qua điểm \(M\left( {1;1;1} \right)\) và tiếp xúc với đường … [Đọc thêm...] về[4] Trong không gian \(Oxyz\), cho đường thẳng \(\Delta \) đi qua \(E\left( {1 + 3a; – 2;2 + 3a} \right)\) và có một vectơ chỉ phương \(\overrightarrow u = \left( {a;1;a + 1} \right)\). Biết khi \(a\) thay đổi luôn tồn tại một mặt cầu \(\left( S \right)\) cố định có tâm \(I\left( {m;n;p} \right)\) bán kính \(R\) đi qua điểm \(M\left( {1;1;1} \right)\) và tiếp xúc với đường thẳng \(\Delta \). Một khối nón \(\left( N \right)\) có đỉnh \(I\) và đường tròn đáy của khối nón nằm trên mặt cầu \(\left( S \right)\). Thể tích lớn nhất của khối nón \(\left( N \right)\) là \(\max {V_{\left( N \right)}} = \frac{{q\pi }}{3}\). Khi đó tổng \(m + n + p + q\) bằng

[4] Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x – 3} \right)^2} + {\left( {y – 4} \right)^2} + {\left( {z – 4} \right)^2} = 25\) và điểm \(A\left( {0\,;\,1\,;\,9} \right)\). Gọi đường tròn \(\left( C \right)\) là giao tuyến của mặt cầu \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right).\) Lấy hai điểm \(M,\,N\) trên \(\left( C \right)\) sao cho \(MN = 2\sqrt 5 \). Khi tứ diện \(OAMN\) có thể tích lớn nhất thì đường thẳng \(MN\) đi qua điểm nào trong các điểm sau?

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 4} \right)^2} = 25\) và điểm \(A\left( {0\,;\,1\,;\,9} \right)\). Gọi đường tròn \(\left( C \right)\) là giao tuyến của mặt cầu \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right).\) Lấy hai điểm \(M,\,N\) trên \(\left( C … [Đọc thêm...] về[4] Trong không gian \(Oxyz,\) cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x – 3} \right)^2} + {\left( {y – 4} \right)^2} + {\left( {z – 4} \right)^2} = 25\) và điểm \(A\left( {0\,;\,1\,;\,9} \right)\). Gọi đường tròn \(\left( C \right)\) là giao tuyến của mặt cầu \(\left( S \right)\) với mặt phẳng \(\left( {Oxy} \right).\) Lấy hai điểm \(M,\,N\) trên \(\left( C \right)\) sao cho \(MN = 2\sqrt 5 \). Khi tứ diện \(OAMN\) có thể tích lớn nhất thì đường thẳng \(MN\) đi qua điểm nào trong các điểm sau?

[4] Trong không gian tọa độ \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {\left( {y – 1} \right)^2} + {\left( {z – 2} \right)^2} = 16\),\(\left( {{S_2}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1\) và điểm \(A\left( {\frac{4}{3};\frac{7}{3}; – \frac{{14}}{3}} \right)\). Gọi \(I\) là tâm của mặt cầu \(\left( {{S_1}} \right)\) và \(\left( P \right)\) là mặt phẳng tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\) và \(\left( {{S_2}} \right)\). Xét các điểm \(M\) thay đổi và thuộc mặt phẳng \(\left( P \right)\) sao cho đường thẳng \(IM\) tiếp xúc với mặt cầu \(\left( {{S_2}} \right)\). Khi đoạn thẳng \(AM\) ngắn nhất thì \(M\left( {a;b;c} \right)\). Tính giá trị của \(T = a + b + c\).

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian tọa độ \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\),\(\left( {{S_2}} \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1\) và điểm \(A\left( {\frac{4}{3};\frac{7}{3}; - \frac{{14}}{3}} \right)\). Gọi \(I\) là tâm của mặt cầu \(\left( {{S_1}} \right)\) và … [Đọc thêm...] về[4] Trong không gian tọa độ \(Oxyz\), cho hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {\left( {y – 1} \right)^2} + {\left( {z – 2} \right)^2} = 16\),\(\left( {{S_2}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1\) và điểm \(A\left( {\frac{4}{3};\frac{7}{3}; – \frac{{14}}{3}} \right)\). Gọi \(I\) là tâm của mặt cầu \(\left( {{S_1}} \right)\) và \(\left( P \right)\) là mặt phẳng tiếp xúc với cả hai mặt cầu \(\left( {{S_1}} \right)\) và \(\left( {{S_2}} \right)\). Xét các điểm \(M\) thay đổi và thuộc mặt phẳng \(\left( P \right)\) sao cho đường thẳng \(IM\) tiếp xúc với mặt cầu \(\left( {{S_2}} \right)\). Khi đoạn thẳng \(AM\) ngắn nhất thì \(M\left( {a;b;c} \right)\). Tính giá trị của \(T = a + b + c\).

[4] Trong không gian \(Oxyz\), cho hình nón \(\left( \mathcal{N} \right)\) có đỉnh \(O\left( {0;0;0} \right)\), độ dài đường sinh bằng \(\sqrt 5 \) và đường tròn đáy nằm trên mặt phẳng \(\left( P \right):z + 2 = 0\). Mặt phẳng \(\left( Q \right):x – 3y = 0\) cắt đường tròn đáy tại hai điểm \(A,B\). Mặt phẳng \(\left( R \right):3z + 2 = 0\) cắt đường sinh \(OB\) tại điểm \(K\). Hỏi độ dài đường ngắn nhất chạy trên bề mặt của hình nón \(\left( \mathcal{N} \right)\) nối từ \(A\) đến \(K\) nằm trong khoảng nào?

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian \(Oxyz\), cho hình nón \(\left( \mathcal{N} \right)\) có đỉnh \(O\left( {0;0;0} \right)\), độ dài đường sinh bằng \(\sqrt 5 \) và đường tròn đáy nằm trên mặt phẳng \(\left( P \right):z + 2 = 0\). Mặt phẳng \(\left( Q \right):x - 3y = 0\) cắt đường tròn đáy tại hai điểm \(A,B\). Mặt phẳng \(\left( R \right):3z + 2 = 0\) cắt đường sinh \(OB\) tại điểm \(K\). … [Đọc thêm...] về[4] Trong không gian \(Oxyz\), cho hình nón \(\left( \mathcal{N} \right)\) có đỉnh \(O\left( {0;0;0} \right)\), độ dài đường sinh bằng \(\sqrt 5 \) và đường tròn đáy nằm trên mặt phẳng \(\left( P \right):z + 2 = 0\). Mặt phẳng \(\left( Q \right):x – 3y = 0\) cắt đường tròn đáy tại hai điểm \(A,B\). Mặt phẳng \(\left( R \right):3z + 2 = 0\) cắt đường sinh \(OB\) tại điểm \(K\). Hỏi độ dài đường ngắn nhất chạy trên bề mặt của hình nón \(\left( \mathcal{N} \right)\) nối từ \(A\) đến \(K\) nằm trong khoảng nào?

[4] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y – 4 = 0\) và hai điểm \(A\left( {4;2;4} \right),\,\,B\left( {1;4;2} \right)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = \left( {0;1;1} \right)\) và \(MN = 4\sqrt 2 \). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y - 4 = 0\) và hai điểm \(A\left( {4;2;4} \right),\,\,B\left( {1;4;2} \right)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = \left( {0;1;1} \right)\) và \(MN = 4\sqrt 2 \). Tính giá trị lớn nhất của \(\left| {AM - BN} … [Đọc thêm...] về[4] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x – 4y – 4 = 0\) và hai điểm \(A\left( {4;2;4} \right),\,\,B\left( {1;4;2} \right)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = \left( {0;1;1} \right)\) và \(MN = 4\sqrt 2 \). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

4] Trong không gian \(Oxyz\), cho hai điểm \(A\left( {2\,;\,0\,;\,3} \right),\,I\left( {1\,;\,2\,;\, – 4} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z – 10 = 0\). Điểm \(M\) di động sao cho độ dài \(MI = 5\) và \(N\) thuộc mặt phẳng \(\left( P \right)\) sao cho diện tích tam giác \(AIN\) bằng \(18\sqrt 2 \). Giá trị lớn nhất của độ dài đoạn thẳng \(MN\) nằm trong khoảng nào?

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

4] Trong không gian \(Oxyz\), cho hai điểm \(A\left( {2\,;\,0\,;\,3} \right),\,I\left( {1\,;\,2\,;\, - 4} \right)\) và mặt phẳng \(\left( P \right):2x - y + 2z - 10 = 0\). Điểm \(M\) di động sao cho độ dài \(MI = 5\) và \(N\) thuộc mặt phẳng \(\left( P \right)\) sao cho diện tích tam giác \(AIN\) bằng \(18\sqrt 2 \). Giá trị lớn nhất của độ dài đoạn thẳng \(MN\) nằm trong … [Đọc thêm...] về4] Trong không gian \(Oxyz\), cho hai điểm \(A\left( {2\,;\,0\,;\,3} \right),\,I\left( {1\,;\,2\,;\, – 4} \right)\) và mặt phẳng \(\left( P \right):2x – y + 2z – 10 = 0\). Điểm \(M\) di động sao cho độ dài \(MI = 5\) và \(N\) thuộc mặt phẳng \(\left( P \right)\) sao cho diện tích tam giác \(AIN\) bằng \(18\sqrt 2 \). Giá trị lớn nhất của độ dài đoạn thẳng \(MN\) nằm trong khoảng nào?

[4] Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( { – 1;0;0} \right)\) và \(B\left( {1;1;3} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa giao tuyến của hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} – 2x + 2y – 6z + 7 = 0\) và \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} + 2y – 6z + 7 = 0\). Xét hai điểm \(M\), \(N\) là hai điểm bất kì thuộc \(\left( P \right)\) sao cho \(MN = 2\). Giá trị nhỏ nhất của \(AM + BN\) bằng

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( { - 1;0;0} \right)\) và \(B\left( {1;1;3} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa giao tuyến của hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z + 7 = 0\) và \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} + 2y - 6z + 7 = 0\). Xét hai điểm \(M\), \(N\) là hai điểm bất kì … [Đọc thêm...] về[4] Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( { – 1;0;0} \right)\) và \(B\left( {1;1;3} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa giao tuyến của hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} – 2x + 2y – 6z + 7 = 0\) và \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} + 2y – 6z + 7 = 0\). Xét hai điểm \(M\), \(N\) là hai điểm bất kì thuộc \(\left( P \right)\) sao cho \(MN = 2\). Giá trị nhỏ nhất của \(AM + BN\) bằng

[4] Trong không gian với hệ tọa độ \({\rm{O}}xyz\), cho hai mặt phẳng song song \(\left( P \right):\,2x – y + 2z – 3 = 0,\)\(\left( Q \right):\,2x – y + 2z + 7 = 0\) và điểm \(A\left( { – 1;\,1;\,1} \right)\) nằm trong khoảng giữa hai mặt phẳng này. Gọi \(\left( S \right)\) là mặt cầu đi qua \(A\) và tiếp xúc với cả \(\left( P \right)\) và \(\left( Q \right).\) Biết khi \(\left( S \right)\) thay đổi thì tâm \(I\) của nó luôn thuộc đường tròn \(\left( C \right)\) cố định. Bán kính hình tròn giới hạn bởi \(\left( C \right)\) là\(\)

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian với hệ tọa độ \({\rm{O}}xyz\), cho hai mặt phẳng song song \(\left( P \right):\,2x - y + 2z - 3 = 0,\)\(\left( Q \right):\,2x - y + 2z + 7 = 0\) và điểm \(A\left( { - 1;\,1;\,1} \right)\) nằm trong khoảng giữa hai mặt phẳng này. Gọi \(\left( S \right)\) là mặt cầu đi qua \(A\) và tiếp xúc với cả \(\left( P \right)\) và \(\left( Q \right).\) Biết khi … [Đọc thêm...] về[4] Trong không gian với hệ tọa độ \({\rm{O}}xyz\), cho hai mặt phẳng song song \(\left( P \right):\,2x – y + 2z – 3 = 0,\)\(\left( Q \right):\,2x – y + 2z + 7 = 0\) và điểm \(A\left( { – 1;\,1;\,1} \right)\) nằm trong khoảng giữa hai mặt phẳng này. Gọi \(\left( S \right)\) là mặt cầu đi qua \(A\) và tiếp xúc với cả \(\left( P \right)\) và \(\left( Q \right).\) Biết khi \(\left( S \right)\) thay đổi thì tâm \(I\) của nó luôn thuộc đường tròn \(\left( C \right)\) cố định. Bán kính hình tròn giới hạn bởi \(\left( C \right)\) là\(\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Interim pages omitted …
  • Trang 24
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.