• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Đề thi toán / Toàn cảnh đề thi toán THPT Quốc gia từ 2017 đến 2019 – Nguyên hàm – Tích Phân

Toàn cảnh đề thi toán THPT Quốc gia từ 2017 đến 2019 – Nguyên hàm – Tích Phân

Ngày 16/05/2019 Thuộc chủ đề:Đề thi toán, Thi THPT Quốc gia môn toán Tag với:De thi toan 2019, On thi nguyen ham tich phan

Toàn cảnh đề thi toán THPT Quốc gia từ 2017 đến 2019 – Nguyên hàm – Tích Phân

==========


file word, giải chi tiết.
các bạn tham khảo ôn thi 2019

===================

XEM TRỰC TUYẾN

—————–
Đề thi file word
DOWNLOAD file .DOC
—-

….. (Nguồn sưu tầm…)

Bài liên quan:

  1. Cho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{{{\left( {x + \sqrt {{x^2} + 1} } \right)}^{2021}}}}{{\sqrt {{x^2} + 1} }}\) và \(F\left( 0 \right) = 1\). Giá trị của \(F\left( 1 \right)\) bằng

  2. Họ các nguyên hàm của hàm số \(f(x) = x\left( {1 + {e^x}} \right)\)là

  3. \(\int {\frac{{2x – 1}}{{x + 1}}{\rm{d}}x} \) bằng

  4. Biết \(f\left( x \right) = \int {{x^3}{e^{{x^2} + 1}}dx} \) và \(f\left( 0 \right) = – \frac{1}{2}e\). Khi đó \(f\left( 1 \right)\) bằng

  5. Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + … + F\left( {2023} \right)\) bằng

  6. Cho hàm số \(f(x) = \frac{{2{x^4} + 3}}{{{x^2}}}\). Khẳng định nào sau đây là đúng?

  7. Biết \(F\left( x \right) = {e^{2x}}\) là một nguyên hàm của hàm số \(f\left( x \right)\). Khi đó khẳng định nào sau đây là đúng?

  8. Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(y = \sqrt {{{\ln }^2}x + 1} .\frac{{\ln x}}{x}\) mà \(F\left( 1 \right) = \frac{1}{3}\). Giá trị \({F^2}\left( e \right)\) bằng

  9. Cho hàm số \(f\left( x \right) = {\cos ^2}x\). Khẳng định nào sau đây là đúng?

  10. Để tính \(I = \int {\frac{{{e^{\tan x}}}}{{co{s^2}x}}{\rm{d}}x} \) theo phương pháp đổi biến số, ta đặt \(t = \tan x\). Khi đó

  11. ÔN TẬP CHUONG TÍCH_PHÂN TN THPT 2023-BT FILE docx
  12. Sách hàm số MŨ – LOGARIT – TÍCH PHÂN – TƯ DUY TOÁN HỌC 4.0
  13. Cho \(F\left( x \right)\)là nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2\sqrt {x\left( {x + 3} \right)} }}\)trên \(\left( {0; + \infty } \right)\)thỏa mãn \(F\left( 1 \right) = \ln 3\). Giá trị của \({e^{F\left( {2021} \right)}} – {e^{F\left( {2020} \right)}}\) thuộc khoảng nào?
  14. Cho hàm số y =f(x) có đạo hàm liên tục trên ℝ ,\(f(0)=0 \text { và } f(x)+f\left(\frac{\pi}{2}-x\right)=\sin x \cdot \cos x \text { với } \forall x \in \mathbb{R}\) . Giá trị của tích phân \(\int_{0}^{\frac{\pi}{2}} x f^{\prime}(x) d x\) bằng ?
  15. Giải tổng hợp đề thi THPT Quốc gia Môn Toán từ 2017 đến 2019

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Đề tham khảo Môn Toán TN THPT 2025 – ONLINE
  • Mỗi ngày 1 Đề thi – số 30 – Thi thử TN THPT 2025 môn Toán – NBV.docx
  • Mỗi ngày 1 Đề thi – số 15 – Thi thử TN THPT 2025 môn Toán – NBV.docx
  • Đề Toán 12 – 108_NHÓM-GVTVN-THI-THỬ-SỞ-NGHỆ-AN-2025.docx
  • ĐỀ TOÁN 12 – 404_L12-Chuyên-phan-Bội-Châu-Chuyên-Hà-Tĩnh-24-25.docx
  • ĐỀ MINH HỌA KỲ THI THPT QUỐC GIA NĂM 2025 – PNL – SỐ 9.docx
  • ĐỀ THI HSG 12 – TOÁN 12 – THANH HÓA – 2024 – 2025.docx
  • Đề minh họa thi đánh giá năng lực 2025 – ĐHSP HCM.pdf
  • Đề thi thử TN THPT 2025 – Cấu trúc mới – Môn Toán Học – Đề 12 – File word có lời giải.docx
  • Đề thi thử TN THPT 2025 – Cấu trúc mới – Môn Toán Học – Đề 11 – File word có lời giải.docx
  • Đề khảo sát Toán 12- 2024 – 2025 – NINH BÌNH – LẦN 1 – ĐỀ số 1.docx
  • Đề minh hoạ và đáp án môn Toán kỳ thi đánh giá năng lực Đại học Sư phạm Hà Nội 2025.pdf
  • Đề minh họa ĐGNL HCM – 2025 _ FINAL – các môn
  • Đề minh họa v-sat – Môn Toán 2024 – 2025
  • ĐỀ THI CHỌN HSG CẤP TỈNH NGHỆ AN – (2024 – 2025) – LỜI GIẢI.pdf
  • GIẢI CHI TIẾT Đề thi tham khảo Môn TOÁN – TN THPT (2024 – 2025).pdf
  • ÔN LUYỆN TRẮC NGHIỆM – TN THPT MÔN TOÁN 2025 (BỘ 3)
  • Đề thi minh họa kì thi đánh giá năng lực chuyên biệt môn Toán của ĐH Sư phạm TP HCM dành cho năm 2025
  • Đề thi Minh Hoạ đánh giá năng lực 2024-2025 HSA – ĐHQG Hà Nội.pdf
  • HD ÔN THI THPTQG MÔN TOÁN – 2025 – CTST.pdf

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.