• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

HHKG VDC

Cho hình chóp tứ giác đềucó tất các các cạnhbằng. Khoảng cách từ điểmđến mặt phẳng\(\left( {SBC} \right)\)bằng

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp tứ giác đềucó tất các các cạnhbằng. Khoảng cách từ điểmđến mặt phẳng\(\left( {SBC} \right)\)bằng A. \(\frac{a \sqrt{6}}{3}\) B. \(\frac{a \sqrt{6}}{6}\) C. \(\frac{a \sqrt{2}}{2}\) D. \(\frac{a \sqrt{3}}{2}\) LỜI GIẢI CHI TIẾT Cách 1 Gọi\(O\)là tâm củahình vuông\(ABCD\). Dohình chóp \(S.ABCD\)là hình chóp tứ giác đều nên\(SO … [Đọc thêm...] về

Cho hình chóp tứ giác đềucó tất các các cạnhbằng. Khoảng cách từ điểmđến mặt phẳng\(\left( {SBC} \right)\)bằng

Cho lăng trụ tam giác $A B C A^{\prime} B^{\prime} C^{\prime}$ có đáy $A B C$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A^{\prime}$ trên mặt phẳng $(A B C)$ là trung điểm $O_{O}^{\top} \mathrm{c}^{\prime} \operatorname{anh} A B$. Góc giữa đường thẳng $A A^{\prime}$ và mặt phẳng $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ là $60^{\circ} .$ Gọi $I$ là trung điểm cạnh $B^{\prime} C^{\prime}$. Khoảng cách từ $I$ đến đường thẳng $A^{\prime} C$ bằng

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho lăng trụ tam giác $A B C A^{\prime} B^{\prime} C^{\prime}$ có đáy $A B C$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A^{\prime}$ trên mặt phẳng $(A B C)$ là trung điểm $O_{O}^{\top} \mathrm{c}^{\prime} \operatorname{anh} A B$. Góc giữa đường thẳng $A A^{\prime}$ và mặt phẳng $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ là $60^{\circ} .$ Gọi $I$ là … [Đọc thêm...] về

Cho lăng trụ tam giác $A B C A^{\prime} B^{\prime} C^{\prime}$ có đáy $A B C$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A^{\prime}$ trên mặt phẳng $(A B C)$ là trung điểm $O_{O}^{\top} \mathrm{c}^{\prime} \operatorname{anh} A B$. Góc giữa đường thẳng $A A^{\prime}$ và mặt phẳng $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ là $60^{\circ} .$ Gọi $I$ là trung điểm cạnh $B^{\prime} C^{\prime}$. Khoảng cách từ $I$ đến đường thẳng $A^{\prime} C$ bằng

26. Cho hình chóp \(S.ABCD\), \(ABCD\) là hình bình hành. \(G\) là trọng tâm của tam giác \(ABC\) và \(I\) là trung điểm của \(SG\). Mặt phẳng \(\left( {ICD} \right)\) chia khối chóp \(S.ABCD\) thành hai khối. Gọi \({V_1}\) là thể tích khối chứa điểm \(S\), \({V_2}\) là thể tích khối còn lại. Tính \(\frac{{{V_1}}}{{{V_2}}}\).

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 26. Cho hình chóp \(S.ABCD\), \(ABCD\) là hình bình hành. \(G\) là trọng tâm của tam giác \(ABC\) và \(I\) là trung điểm của \(SG\). Mặt phẳng \(\left( {ICD} \right)\) chia khối chóp \(S.ABCD\) thành hai khối. Gọi \({V_1}\) là thể tích khối chứa điểm … [Đọc thêm...] về26. Cho hình chóp \(S.ABCD\), \(ABCD\) là hình bình hành. \(G\) là trọng tâm của tam giác \(ABC\) và \(I\) là trung điểm của \(SG\). Mặt phẳng \(\left( {ICD} \right)\) chia khối chóp \(S.ABCD\) thành hai khối. Gọi \({V_1}\) là thể tích khối chứa điểm \(S\), \({V_2}\) là thể tích khối còn lại. Tính \(\frac{{{V_1}}}{{{V_2}}}\).

3. Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O\), cạnh \(AB = a\), \(BC = a\sqrt 3 \). Biết rằng cạnh bên \(SA\) hợp với mặt phẳng đáy \(\left( {ABCD} \right)\) một góc \(60^\circ \)và \(SO\) là đường cao của hình chóp. Tính thể tích của khối cầu ngoại tiếp khối chóp nói trên.

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 3. Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O\), cạnh \(AB = a\), \(BC = a\sqrt 3 \). Biết rằng cạnh bên \(SA\) hợp với mặt phẳng đáy \(\left( {ABCD} \right)\) một góc \(60^\circ \)và \(SO\) là đường cao của hình chóp. Tính thể tích của khối … [Đọc thêm...] về3. Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật tâm \(O\), cạnh \(AB = a\), \(BC = a\sqrt 3 \). Biết rằng cạnh bên \(SA\) hợp với mặt phẳng đáy \(\left( {ABCD} \right)\) một góc \(60^\circ \)và \(SO\) là đường cao của hình chóp. Tính thể tích của khối cầu ngoại tiếp khối chóp nói trên.

12. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\). Biết \(AB = 4a\), \(AD = CD = 2a\). Cạnh bên \(SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(G\) là trọng tâm tam giác \(SBC\), \(M\) là điểm sao cho \(\overrightarrow {MA}  =  – 2\overrightarrow {MS} \) và \(E\) là trung điểm cạnh \(CD\) ( tham khảo hình vẽ). Tính thể tích \(V\) của khối đa diện \(MGABE\). 

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 12. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\). Biết \(AB = 4a\), \(AD = CD = 2a\). Cạnh bên \(SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(G\) là trọng tâm tam giác \(SBC\), \(M\) là điểm sao cho … [Đọc thêm...] về12. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\). Biết \(AB = 4a\), \(AD = CD = 2a\). Cạnh bên \(SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(G\) là trọng tâm tam giác \(SBC\), \(M\) là điểm sao cho \(\overrightarrow {MA}  =  – 2\overrightarrow {MS} \) và \(E\) là trung điểm cạnh \(CD\) ( tham khảo hình vẽ). Tính thể tích \(V\) của khối đa diện \(MGABE\). 

6. Cho hình chóp \(S.ABC\), tam giác \(ABC\) cân tại \(B\), \(AC = a\sqrt 3 ,\,\,\widehat {ABC} = 120^\circ \), tam giác \(SBC\) cân tại \(S\), \(SB\) vuông góc \(AC\), góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính \(\sin \) của góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\). 

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 6. Cho hình chóp \(S.ABC\), tam giác \(ABC\) cân tại \(B\), \(AC = a\sqrt 3 ,\,\,\widehat {ABC} = 120^\circ \), tam giác \(SBC\) cân tại \(S\), \(SB\) vuông góc \(AC\), góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(60^\circ \). … [Đọc thêm...] về6. Cho hình chóp \(S.ABC\), tam giác \(ABC\) cân tại \(B\), \(AC = a\sqrt 3 ,\,\,\widehat {ABC} = 120^\circ \), tam giác \(SBC\) cân tại \(S\), \(SB\) vuông góc \(AC\), góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính \(\sin \) của góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\). 

11. Cho hình chóp \(S.ABCD\) có thể tích bằng \(36{a^3}\sqrt 2 \), \(AB = 6a,\) tam giác \(SAB\) đều, tứ giác \(ABCD\) là hình bình hành. Gọi \(I\) là điểm thuộc đường thẳng \(SB\) sao cho \(\overrightarrow {SI}  = \frac{2}{5}\overrightarrow {SB} \), \(E\) là điểm thuộc đường thẳng \(SC\)sao cho \(\overrightarrow {SE}  = \frac{2}{3}\overrightarrow {SC} \), gọi \(H\) là trọng tâm tam giác \(ACD\). Tính khoảng cách giữa hai đường thẳng \(AI\) và \(HE\). 

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 11. Cho hình chóp \(S.ABCD\) có thể tích bằng \(36{a^3}\sqrt 2 \), \(AB = 6a,\) tam giác \(SAB\) đều, tứ giác \(ABCD\) là hình bình hành. Gọi \(I\) là điểm thuộc đường thẳng \(SB\) sao cho \(\overrightarrow {SI}  = \frac{2}{5}\overrightarrow {SB} \), … [Đọc thêm...] về11. Cho hình chóp \(S.ABCD\) có thể tích bằng \(36{a^3}\sqrt 2 \), \(AB = 6a,\) tam giác \(SAB\) đều, tứ giác \(ABCD\) là hình bình hành. Gọi \(I\) là điểm thuộc đường thẳng \(SB\) sao cho \(\overrightarrow {SI}  = \frac{2}{5}\overrightarrow {SB} \), \(E\) là điểm thuộc đường thẳng \(SC\)sao cho \(\overrightarrow {SE}  = \frac{2}{3}\overrightarrow {SC} \), gọi \(H\) là trọng tâm tam giác \(ACD\). Tính khoảng cách giữa hai đường thẳng \(AI\) và \(HE\). 

19. Cho tứ diện \(ABCD\) có \(AB = a,CD = 2a\), góc giữa hai đường thẳng \(AD\) và \(BC\)bằng \(60^\circ \), \(\Delta ABD\) vuông tại \(A\); \(\Delta ABC\) vuông tại \(B\). Khi thể tích khối tứ diện \(ABCD\) lớn nhất, tính khoảng cách giữa hai đường thẳng \(AB\) và \(CD\). 

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 19. Cho tứ diện \(ABCD\) có \(AB = a,CD = 2a\), góc giữa hai đường thẳng \(AD\) và \(BC\)bằng \(60^\circ \), \(\Delta ABD\) vuông tại \(A\); \(\Delta ABC\) vuông tại \(B\). Khi thể tích khối tứ diện \(ABCD\) lớn nhất, tính khoảng cách giữa hai đường thẳng … [Đọc thêm...] về19. Cho tứ diện \(ABCD\) có \(AB = a,CD = 2a\), góc giữa hai đường thẳng \(AD\) và \(BC\)bằng \(60^\circ \), \(\Delta ABD\) vuông tại \(A\); \(\Delta ABC\) vuông tại \(B\). Khi thể tích khối tứ diện \(ABCD\) lớn nhất, tính khoảng cách giữa hai đường thẳng \(AB\) và \(CD\). 

31. Cho lăng trụ tứ giác đều \(ABCD.A’B’C’D’\) có cạnh bên bằng \(2a\), cạnh đáy bằng \(a\). Gọi \(I\) là trung điểm của \(DD’\). Tính cosin của góc giữa hai mặt phẳng \(\left( {IAC} \right)\) và \(\left( {ACC’A’} \right)\). 

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 31. Cho lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) có cạnh bên bằng \(2a\), cạnh đáy bằng \(a\). Gọi \(I\) là trung điểm của \(DD'\). Tính cosin của góc giữa hai mặt phẳng \(\left( {IAC} \right)\) và \(\left( {ACC'A'} \right)\).  A. \(\frac{{\sqrt 6 … [Đọc thêm...] về31. Cho lăng trụ tứ giác đều \(ABCD.A’B’C’D’\) có cạnh bên bằng \(2a\), cạnh đáy bằng \(a\). Gọi \(I\) là trung điểm của \(DD’\). Tính cosin của góc giữa hai mặt phẳng \(\left( {IAC} \right)\) và \(\left( {ACC’A’} \right)\). 

38. Cho lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\). Khoảng cách giữa đường thẳng \(AA’\) với mặt phẳng \(BCC’B’\) bằng khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {ABC’} \right)\) và cùng bằng \(x\). Góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {ABC’} \right)\) bằng \(\alpha \). Tính \(\tan \alpha \) khi thể tích khối lăng trụ \(ABC.A’B’C’\) nhỏ nhất. 

Ngày 05/07/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, TN THPT 2021

DẠNG TOÁN TỔNG HỢP HÌNH HỌC KHÔNG GIAN - GÓC - KHOẢNG CÁCH - THỂ TÍCH - TỶ SỐ - CỰC TRỊ HÌNH HỌC =============== 38. Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\). Khoảng cách giữa đường thẳng \(AA'\) với mặt phẳng \(BCC'B'\) bằng khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {ABC'} \right)\) và cùng bằng \(x\). Góc giữa hai mặt phẳng … [Đọc thêm...] về38. Cho lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\). Khoảng cách giữa đường thẳng \(AA’\) với mặt phẳng \(BCC’B’\) bằng khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {ABC’} \right)\) và cùng bằng \(x\). Góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {ABC’} \right)\) bằng \(\alpha \). Tính \(\tan \alpha \) khi thể tích khối lăng trụ \(ABC.A’B’C’\) nhỏ nhất. 

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.