Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\,\,SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\); góc giữa đường thẳng \(SB\) và mặt phẳng\(ABC\) bằng \(60^\circ \). Gọi \(M\) là trung điểm cạnh \(AB\). Khoảng cách từ \(B\) đến \(\left( {SMC} \right)\) bằng A. \(\frac{a}{2}\). B. \(\frac{{a\sqrt {39} }}{{13}}\). C. \(a\sqrt 3 \). D. … [Đọc thêm...] vềCho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\,\,SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\); góc giữa đường thẳng \(SB\) và mặt phẳng\(ABC\) bằng \(60^\circ \). Gọi \(M\) là trung điểm cạnh \(AB\). Khoảng cách từ \(B\) đến \(\left( {SMC} \right)\) bằng
Trắc nghiệm tính khoảng cách HHKG
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\).Gọi \(O\) là giao điểm của hai đường chéo.Tính khoảng cách từ \(O\) đến \((SCD)\).
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\).Gọi \(O\) là giao điểm của hai đường chéo.Tính khoảng cách từ \(O\) đến \((SCD)\). A. \(d\left( {O,\left( {SCD} \right)} \right) = \frac{{a\sqrt 3 }}{2}\). B. \(d\left( {O,\left( {SCD} \right)} \right) = a\). C. \(d\left( {O,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{6}\). D. \(d\left( … [Đọc thêm...] vềCho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\).Gọi \(O\) là giao điểm của hai đường chéo.Tính khoảng cách từ \(O\) đến \((SCD)\).
Cho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có đáy là hình vuông cạnh \(a\), cạnh bên \(AA’ = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(D’C\) bằng
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông cạnh \(a\), cạnh bên \(AA' = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(D'C\) bằng A. \(\frac{{\sqrt 7 a}}{7}\). B. \(\frac{{\sqrt {21} a}}{7}\). C. \(\frac{{\sqrt 3 a}}{7}\). D. \(\frac{{\sqrt {14} a}}{7}\). Lời giải: Gọi \(O\) là giao điểm của \(BD\) và \(AC\). Kẻ \(AH \bot … [Đọc thêm...] vềCho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có đáy là hình vuông cạnh \(a\), cạnh bên \(AA’ = a\sqrt 3 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(D’C\) bằng
Cho hình lập phương \(ABCD.A’B’C’D’\) cạnh \(a\). Khoảng cách giữa hai đường thẳng \(B’D\) và \(D’C\) tính theo \(a\) bằng
Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Khoảng cách giữa hai đường thẳng \(B'D\) và \(D'C\) tính theo \(a\) bằng A. \(\frac{{\sqrt 3 a}}{6}\). B. \(\frac{{\sqrt 6 a}}{6}\). C. \(\frac{a}{2}\). D. \(\frac{{\sqrt 6 a}}{3}\). Lời giải: Gọi \(I\) là giao điểm của \(D'C\) và \(C'D\). Kẻ \(IH \bot B'D\,\,\left( 1 \right)\). Ta có: \(\left\{ … [Đọc thêm...] vềCho hình lập phương \(ABCD.A’B’C’D’\) cạnh \(a\). Khoảng cách giữa hai đường thẳng \(B’D\) và \(D’C\) tính theo \(a\) bằng
Cho hình lăng trụ đứng \(ABCD.A’B’C’D’\) có đáy hình vuông cạnh \(a\), \(AA’ = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {A’BD} \right)\).
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy hình vuông cạnh \(a\), \(AA' = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {A'BD} \right)\). A. \(\frac{{a\sqrt 5 }}{5}\). B. \(\frac{{a\sqrt {10} }}{5}\). C. \(\frac{{a\sqrt 2 }}{5}\). D. \(\frac{{a\sqrt {10} }}{2}\). Lời giải: Gọi \(O\) là tâm hình vuông \(ABCD\) suy ra \(AO = \frac{1}{2}AC … [Đọc thêm...] vềCho hình lăng trụ đứng \(ABCD.A’B’C’D’\) có đáy hình vuông cạnh \(a\), \(AA’ = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {A’BD} \right)\).
Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\) \(BC = AA’ = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {ABB’A’} \right)\).
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\) \(BC = AA' = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {ABB'A'} \right)\). A. \(\frac{a}{2}\). B. \(\frac{{a\sqrt 2 }}{2}\). C. \(a\). D. \(a\sqrt 2 \). Lời giải: Ta có \(\left\{ \begin{array}{l}CA \bot AB\\CA \bot AA'\end{array} \right. \Rightarrow CA … [Đọc thêm...] vềCho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\) \(BC = AA’ = a\sqrt 2 \). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {ABB’A’} \right)\).
Cho hình chóp tam giác đều \(S.ABC\) có tất các cạnh đều bằng \(a\).Gọi \(O\) là tâm của tam giác \(ABC\).Tính khoảng cách từ \(O\) đến \((SCB)\).
Cho hình chóp tam giác đều \(S.ABC\) có tất các cạnh đều bằng \(a\).Gọi \(O\) là tâm của tam giác \(ABC\).Tính khoảng cách từ \(O\) đến \((SCB)\). A. \(d\left( {O,\left( {SCB} \right)} \right) = \frac{{a\sqrt {54} }}{2}\). B. \(d\left( {O,\left( {SCB} \right)} \right) = \frac{{a\sqrt {54} }}{4}\). C. \(d\left( {O,\left( {SCB} \right)} \right) = \frac{{a\sqrt 3 … [Đọc thêm...] vềCho hình chóp tam giác đều \(S.ABC\) có tất các cạnh đều bằng \(a\).Gọi \(O\) là tâm của tam giác \(ABC\).Tính khoảng cách từ \(O\) đến \((SCB)\).
Cho hình chóp\(\frac{{27}}{2}V\)có đáy\(\frac{9}{4}V\)là hình thoi cạnh \(a\),\(\widehat {BAD} = {60^\circ }\), tam giác\(SAD\)đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách\(\frac{{SM}}{{ME}} = 2\)giữa hai đường thẳng\(SA\)và\(BD\)bằng
Câu hỏi:
Cho hình chóp\(\frac{{27}}{2}V\)có đáy\(\frac{9}{4}V\)là hình thoi cạnh \(a\),\(\widehat {BAD} = {60^\circ }\), tam giác\(SAD\)đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách\(\frac{{SM}}{{ME}} = 2\)giữa hai đường thẳng\(SA\)và\(BD\)bằng
A. \(\frac{{a\sqrt 6 }}{4}\).
B. \(\frac{{a\sqrt 6 }}{2}\).
C. \(\frac{{a\sqrt {15} }}{{10}}\).
D. … [Đọc thêm...] về Cho hình chóp\(\frac{{27}}{2}V\)có đáy\(\frac{9}{4}V\)là hình thoi cạnh \(a\),\(\widehat {BAD} = {60^\circ }\), tam giác\(SAD\)đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách\(\frac{{SM}}{{ME}} = 2\)giữa hai đường thẳng\(SA\)và\(BD\)bằng
Cho lăng trụ tam giác $A B C A^{\prime} B^{\prime} C^{\prime}$ có đáy $A B C$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A^{\prime}$ trên mặt phẳng $(A B C)$ là trung điểm $O_{O}^{\top} \mathrm{c}^{\prime} \operatorname{anh} A B$. Góc giữa đường thẳng $A A^{\prime}$ và mặt phẳng $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ là $60^{\circ} .$ Gọi $I$ là trung điểm cạnh $B^{\prime} C^{\prime}$. Khoảng cách từ $I$ đến đường thẳng $A^{\prime} C$ bằng
Câu hỏi:
Cho lăng trụ tam giác $A B C A^{\prime} B^{\prime} C^{\prime}$ có đáy $A B C$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A^{\prime}$ trên mặt phẳng $(A B C)$ là trung điểm $O_{O}^{\top} \mathrm{c}^{\prime} \operatorname{anh} A B$. Góc giữa đường thẳng $A A^{\prime}$ và mặt phẳng $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ là $60^{\circ} .$ Gọi $I$ là … [Đọc thêm...] về Cho lăng trụ tam giác $A B C A^{\prime} B^{\prime} C^{\prime}$ có đáy $A B C$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A^{\prime}$ trên mặt phẳng $(A B C)$ là trung điểm $O_{O}^{\top} \mathrm{c}^{\prime} \operatorname{anh} A B$. Góc giữa đường thẳng $A A^{\prime}$ và mặt phẳng $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ là $60^{\circ} .$ Gọi $I$ là trung điểm cạnh $B^{\prime} C^{\prime}$. Khoảng cách từ $I$ đến đường thẳng $A^{\prime} C$ bằng
Cho hình chóp tứ giác đềucó tất các các cạnhbằng. Khoảng cách từ điểm
đến mặt phẳng\(\left( {SBC} \right)\)bằng
Câu hỏi:
Cho hình chóp tứ giác đềucó tất các các cạnhbằng. Khoảng cách từ điểmđến mặt phẳng\(\left( {SBC} \right)\)bằng
A. \(\frac{a \sqrt{6}}{3}\)
B. \(\frac{a \sqrt{6}}{6}\)
C. \(\frac{a \sqrt{2}}{2}\)
D. \(\frac{a \sqrt{3}}{2}\)
LỜI GIẢI CHI TIẾT
Cách 1
Gọi\(O\)là tâm củahình vuông\(ABCD\).
Dohình chóp \(S.ABCD\)là hình chóp tứ giác đều nên\(SO … [Đọc thêm...] về Cho hình chóp tứ giác đềucó tất các các cạnhbằng. Khoảng cách từ điểmđến mặt phẳng\(\left( {SBC} \right)\)bằng