• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm tính khoảng cách HHKG

Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thang vuông tại\(A\)và\(B\), \(AB = BC = a\),\(\Delta ABO\).\(SA\)vuông góc với mặt phẳng\(\left( {ABCD} \right)\), đường thẳng\(SC\)tạo với mặt phẳng\(\left( {SAB} \right)\)một góc \({30^0}\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {SCD} \right)\)bằng

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thang vuông tại\(A\)và\(B\), \(AB = BC = a\),\(\Delta ABO\).\(SA\)vuông góc với mặt phẳng\(\left( {ABCD} \right)\), đường thẳng\(SC\)tạo với mặt phẳng\(\left( {SAB} \right)\)một góc \({30^0}\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {SCD} \right)\)bằng A. \(AO = \sqrt {A{B^2} - B{O^2}}= \sqrt {{x^2} - {a^2}} … [Đọc thêm...] về

Cho hình chóp\(S.ABCD\)có đáy\(ABCD\)là hình thang vuông tại\(A\)và\(B\), \(AB = BC = a\),\(\Delta ABO\).\(SA\)vuông góc với mặt phẳng\(\left( {ABCD} \right)\), đường thẳng\(SC\)tạo với mặt phẳng\(\left( {SAB} \right)\)một góc \({30^0}\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {SCD} \right)\)bằng

Cho hình lăng trụ đều\(ABC. A’B’C’\)có thể tích\(V = \frac{{{a^3}\sqrt 3 }}{2}\), tam giác\(AB’C’\)có diện tích là\(\frac{{{a^2}\sqrt {19} }}{4}\). Gọi\(M\) là trung điểm của cạnh\(A{A^\prime }\). Khoảng cách từ điểm\(M\) đến mặt phẳng\(\left( {AB’C’} \right)\)bằng

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình lăng trụ đều\(ABC. A'B'C'\)có thể tích\(V = \frac{{{a^3}\sqrt 3 }}{2}\), tam giác\(AB'C'\)có diện tích là\(\frac{{{a^2}\sqrt {19} }}{4}\). Gọi\(M\) là trung điểm của cạnh\(A{A^\prime }\). Khoảng cách từ điểm\(M\) đến mặt phẳng\(\left( {AB'C'} \right)\)bằng A. \(\frac{{2a\sqrt {57} }}{{19}}\). B. \(\frac{{a\sqrt {57} }}{{19}}\). C. \(\frac{{6a\sqrt … [Đọc thêm...] về

Cho hình lăng trụ đều\(ABC. A’B’C’\)có thể tích\(V = \frac{{{a^3}\sqrt 3 }}{2}\), tam giác\(AB’C’\)có diện tích là\(\frac{{{a^2}\sqrt {19} }}{4}\). Gọi\(M\) là trung điểm của cạnh\(A{A^\prime }\). Khoảng cách từ điểm\(M\) đến mặt phẳng\(\left( {AB’C’} \right)\)bằng

Cholăng trụ\(ABC \cdot A’B’C’\)có đáy là tam giác đều cạnh\(a\).Hình chiếu vuônggóc của\(B’\)lên mặt phẳng\(\left( {ABC} \right)\)trùng với trọng tâm\(G\)của tam giác\(ABC\).Cạnh bên\(BB’\)hợp với đáy\(\left( {ABC} \right)\) góc\({60^\circ }\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {BCC’B’} \right)\)là

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cholăng trụ\(ABC \cdot A'B'C'\)có đáy là tam giác đều cạnh\(a\).Hình chiếu vuônggóc của\(B'\)lên mặt phẳng\(\left( {ABC} \right)\)trùng với trọng tâm\(G\)của tam giác\(ABC\).Cạnh bên\(BB'\)hợp với đáy\(\left( {ABC} \right)\) góc\({60^\circ }\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {BCC'B'} \right)\)là A. \(\frac{{3a}}{{2\sqrt {13} }}\). B. … [Đọc thêm...] về

Cholăng trụ\(ABC \cdot A’B’C’\)có đáy là tam giác đều cạnh\(a\).Hình chiếu vuônggóc của\(B’\)lên mặt phẳng\(\left( {ABC} \right)\)trùng với trọng tâm\(G\)của tam giác\(ABC\).Cạnh bên\(BB’\)hợp với đáy\(\left( {ABC} \right)\) góc\({60^\circ }\). Khoảng cách từ\(A\)đến mặt phẳng\(\left( {BCC’B’} \right)\)là

Cho hình lăng trụ đứng \(ABC. {A_1}{B_1}{C_1}\) \(A{A_1} = 2a\sqrt 5 \)và\(\widehat {BAC} = {120^\circ }\) có\(AB = a\), \(AC = 2a\),Gọi\(I\),\(K\) lần lượt là trung điểm của các cạnh\(B{B_1}\),\(C{C_1}\).Tính khoảng cách từ điểm\(I\)đến mặt phẳng\(\left( {{A_1}BK} \right)\)

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình lăng trụ đứng\(AB C. {A_1}{B_1}{C_1}\) \(A{A_1} = 2a\sqrt 5 \)và\(\widehat {BAC} = {120^\circ }\) có\(AB = a\), \(AC = 2a\),Gọi\(I\),\(K\) lần lượt là trung điểm của các cạnh\(B{B_1}\),\(C{C_1}\).Tính khoảng cách từ điểm\(I\)đến mặt phẳng\(\left( {{A_1}BK} \right)\) A. \(\frac{{a\sqrt 5 }}{3}\). B. \(a\sqrt {15} \). C. \(\frac{{a\sqrt {15} … [Đọc thêm...] về

Cho hình lăng trụ đứng \(ABC. {A_1}{B_1}{C_1}\) \(A{A_1} = 2a\sqrt 5 \)và\(\widehat {BAC} = {120^\circ }\) có\(AB = a\), \(AC = 2a\),Gọi\(I\),\(K\) lần lượt là trung điểm của các cạnh\(B{B_1}\),\(C{C_1}\).Tính khoảng cách từ điểm\(I\)đến mặt phẳng\(\left( {{A_1}BK} \right)\)

Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác cân,\(AB = AC = 2a\), góc\(\widehat {BAC} = {120^\circ }\). Tam giác\(SAB\)cân tại\(S\)và nằm trong mặt phẳng vuông góc với đáy, góc tạo bởi mặt phẳng\(\left( {SBC} \right)\)và mặt phẳng đáy\(\left( {ABC} \right)\)bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AC\)và\(SB\)

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác cân,\(AB = AC = 2a\), góc\(\widehat {BAC} = {120^\circ }\). Tam giác\(SAB\)cân tại\(S\)và nằm trong mặt phẳng vuông góc với đáy, góc tạo bởi mặt phẳng\(\left( {SBC} \right)\)và mặt phẳng đáy\(\left( {ABC} \right)\)bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AC\)và\(SB\) A. \(\frac{{a\sqrt {15} … [Đọc thêm...] về

Cho hình chóp\(S.ABC\)có đáy\(ABC\)là tam giác cân,\(AB = AC = 2a\), góc\(\widehat {BAC} = {120^\circ }\). Tam giác\(SAB\)cân tại\(S\)và nằm trong mặt phẳng vuông góc với đáy, góc tạo bởi mặt phẳng\(\left( {SBC} \right)\)và mặt phẳng đáy\(\left( {ABC} \right)\)bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AC\)và\(SB\)

Cho lăng trụ đứng tam giác\(AB

C. A’B’C’\)có đáy là một tam giác vuông cân tại\(B\),\(AB = BC = a\),\(AA’ = a\sqrt 2 \),\(M\)là trung điểm\(BC\).Tính khoảng cách giữa hai đường thẳng\(AM\)và\(B’C\).

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho lăng trụ đứng tam giác\(AB C. A'B'C'\)có đáy là một tam giác vuông cân tại\(B\),\(AB = BC = a\),\(AA' = a\sqrt 2 \),\(M\)là trung điểm\(BC\).Tính khoảng cách giữa hai đường thẳng\(AM\)và\(B'C\). A. \(\frac{{a\sqrt 7 }}{7}\). B. \(\frac{{a\sqrt 3 }}{2}\). C. \(\frac{{2a}}{{\sqrt 5 }}\). D. \(a\sqrt 3 \). LỜI GIẢI CHI TIẾT +) Gọi\(E\)là … [Đọc thêm...] về

Cho lăng trụ đứng tam giác\(AB

C. A’B’C’\)có đáy là một tam giác vuông cân tại\(B\),\(AB = BC = a\),\(AA’ = a\sqrt 2 \),\(M\)là trung điểm\(BC\).Tính khoảng cách giữa hai đường thẳng\(AM\)và\(B’C\).

Cho hình hộp\(ABCD. A’B’C’D’\)cótất cả các cạnh đều bằng\(a\)và ba góc đỉnh\(A\)đều bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AB\)và\(CC’\)

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình hộp\(ABCD. A'B'C'D'\)cótất cả các cạnh đều bằng\(a\)và ba góc đỉnh\(A\)đều bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AB\)và\(CC'\) A. \(\frac{{a\sqrt 6 }}{2}\). B. \(\frac{{a\sqrt 6 }}{3}\). C. \(\frac{{a\sqrt 6 }}{4}\). D. \(\frac{{a\sqrt 6 }}{6}\). LỜI GIẢI CHI TIẾT Hình hộp\(ABCD. A'B'C'D'\)cótất cả các cạnh đều … [Đọc thêm...] về

Cho hình hộp\(ABCD. A’B’C’D’\)cótất cả các cạnh đều bằng\(a\)và ba góc đỉnh\(A\)đều bằng\({60^\circ }\). Tính khoảng cách giữa hai đường thẳng\(AB\)và\(CC’\)

Sử dụng khoảng cách để tính góc.

Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), góc \(\widehat {BAD} = 60^\circ \). Hình chiếu vuông góc của đỉnh \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) là điểm \(H\) trên cạnh \(AB\) sao cho \(HA = 2HB\). Góc giữa \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Tính sin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right)\).

Ngày 15/10/2021 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:HHKG VDC, Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Sử dụng khoảng cách để tính góc. Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), góc \(\widehat {BAD} = 60^\circ \). Hình chiếu vuông góc của đỉnh \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) là điểm \(H\) trên cạnh \(AB\) sao cho \(HA = 2HB\). Góc giữa \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Tính sin của góc giữa hai mặt phẳng … [Đọc thêm...] về

Sử dụng khoảng cách để tính góc.

Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), góc \(\widehat {BAD} = 60^\circ \). Hình chiếu vuông góc của đỉnh \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) là điểm \(H\) trên cạnh \(AB\) sao cho \(HA = 2HB\). Góc giữa \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Tính sin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right)\).

Chuyên đề Khoảng cách hình học 11 ôn thi tốt nghiệp 2020

Ngày 08/06/2020 Thuộc chủ đề:Thi THPT Quốc gia môn toán Tag với:Tot nghiep mon toan, Trắc nghiệm tính khoảng cách HHKG

Chuyên đề Khoảng cách hình học 11 ôn thi tốt nghiệp 2020 – file word tương tự câu 40 ĐỀ TOÁN tham khảo Tốt Nghiệp NĂM 2020 lần 2 của bộ. ------------- 5. Khoảng cách giữa hai đường thẳng chéo nhau + Đường thẳng  cắt cả a, b và cùng vuông góc với a, b gọi là đường vuông góc chung của a, b. + Nếu  cắt a, b tại I, J thì IJ được gọi là đoạn vuông góc chung của a, b. + … [Đọc thêm...] vềChuyên đề Khoảng cách hình học 11 ôn thi tốt nghiệp 2020

Câu 37: (MH Toan 2020) Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB = 2a\), \(AD = DC = CB = a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = 3a\) (minh họa như hình bên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng.

Ngày 06/04/2020 Thuộc chủ đề:Trắc nghiệm Khoảng cách và góc trong không gian Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu 37: (MH Toan 2020) Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB = 2a\), \(AD = DC = CB = a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = 3a\) (minh họa như hình bên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng. A. \(\frac{{3a}}{4}\). B. \(\frac{{3a}}{2}\). C. \(\frac{{3\sqrt {13} a}}{{13}}\). D. \(\frac{{6\sqrt … [Đọc thêm...] vềCâu 37: (MH Toan 2020) Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB = 2a\), \(AD = DC = CB = a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = 3a\) (minh họa như hình bên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng.

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.