Câu hỏi: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là: A. \(\frac{{2a}}{3}\) B. … [Đọc thêm...] vềĐề: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là:
Trắc nghiệm tính khoảng cách HHKG
Đề: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC.
Câu hỏi: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC. A. \(d = 3a\sqrt {\frac{{13}}{{129}}} .\) B. \(d = \frac{4}{3}a\sqrt … [Đọc thêm...] vềĐề: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC.
Đề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).
Câu hỏi: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB). A. \(\frac{{6\sqrt {13} a}}{{13}}\) B. \(\frac{{6\sqrt {13} a}}{7}\) C. \(\frac{{4\sqrt … [Đọc thêm...] vềĐề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).
Đề: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC.
Câu hỏi: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC. A. \(d = \frac{{a\sqrt 6 }}{2}\) B. \(d = \frac{{a\sqrt 3 }}{2}\) C. \(d =a\sqrt{6}\) D. \(d … [Đọc thêm...] vềĐề: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC.
Đề: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC).
Câu hỏi: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC). A. \(d = \frac{1}{2}.\) B. \(d = \frac{2}{\sqrt{3}}.\) C. \(d = \frac{3}{4}.\) D. \(d = \frac{1}{\sqrt{2}}.\) … [Đọc thêm...] vềĐề: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC).
Đề: Cho lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông, AB = BC = 1; AA' = \(\sqrt{2}.\) M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM; B'C?
Câu hỏi: Cho lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông, AB = BC = 1; AA' = \(\sqrt{2}.\) M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM; B'C? A. \(d = \frac{1}{\sqrt{7}}\) B. \(d = \frac{2}{\sqrt{7}}\) C. \(d = \sqrt{7}\) D. \(d = \frac{1}{7}\) Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề: Cho lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông, AB = BC = 1; AA' = \(\sqrt{2}.\) M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM; B'C?
Đề: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Khi đó, khoảng cách từ S đến mặt đáy (ABC) bằng
Câu hỏi: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Khi đó, khoảng cách từ S đến mặt đáy (ABC) bằng A. a/2 B. \(a\sqrt{3}\) C. \(\frac{a\sqrt{3}}{2}\) D. \(2a\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời … [Đọc thêm...] vềĐề: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Khi đó, khoảng cách từ S đến mặt đáy (ABC) bằng
Đề: Cho hình chóp SABCD có đày ACBD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SC và mặt phẳng (ACBD) bằng 450. Tính khoảng cách giữa hai đường thẳng SB, AC?
Câu hỏi: Cho hình chóp SABCD có đày ACBD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SC và mặt phẳng (ACBD) bằng 450. Tính khoảng cách giữa hai đường thẳng SB, AC? A. \(\frac{a}{\sqrt{5}}\) B. \(\frac{a\sqrt{2}}{\sqrt{5}}\) C. \(\frac{a\sqrt{3}}{\sqrt{5}}\) D. … [Đọc thêm...] vềĐề: Cho hình chóp SABCD có đày ACBD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SC và mặt phẳng (ACBD) bằng 450. Tính khoảng cách giữa hai đường thẳng SB, AC?
Đề: Tổng khoảng cách từ một điểm trong bất kì của khối tứ diện đều cạnh a đến tất cả các mặt của nó bằng
Câu hỏi: Tổng khoảng cách từ một điểm trong bất kì của khối tứ diện đều cạnh a đến tất cả các mặt của nó bằng A. \(\frac{\sqrt{6}a}{2}\) B. \(\frac{\sqrt{6}a}{3}\) C. \(2a\sqrt{3}\) D. \(a\sqrt{3}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin … [Đọc thêm...] vềĐề: Tổng khoảng cách từ một điểm trong bất kì của khối tứ diện đều cạnh a đến tất cả các mặt của nó bằng
Đề: Cho tứ diện ABCD có AD vuông góc mặt phẳng (ABC); AC=AD=4; AB=3; BC=5. Tính khoảng cách từ A đến mặt phẳng (BCD).
Câu hỏi: Cho tứ diện ABCD có AD vuông góc mặt phẳng (ABC); AC=AD=4; AB=3; BC=5. Tính khoảng cách từ A đến mặt phẳng (BCD). A. \(d\left( {A,(BCD)} \right) = \frac{6}{{\sqrt {34} }}\) B. \(d\left( {A,(BCD)} \right) = \frac{{12}}{{\sqrt {34} }}\) C. \(d\left( {A,(BCD)} \right) = \frac{{4}}{{\sqrt {34} }}\) D. \(d\left( {A,(BCD)} \right) = \frac{{3}}{{\sqrt {34} }}\) … [Đọc thêm...] vềĐề: Cho tứ diện ABCD có AD vuông góc mặt phẳng (ABC); AC=AD=4; AB=3; BC=5. Tính khoảng cách từ A đến mặt phẳng (BCD).