• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm tính khoảng cách HHKG

Đề: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M  là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC).

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M  là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC). A. \(d = \frac{1}{2}.\) B. \(d = \frac{2}{\sqrt{3}}.\) C. \(d = \frac{3}{4}.\) D. \(d = \frac{1}{\sqrt{2}}.\) … [Đọc thêm...] vềĐề: Cho hình chóp tứ giác đều S.ABCD có thể tích \(V = \frac{{\sqrt 2 }}{6}.\) Gọi M  là trung điểm của cạnh SB. Biết \(SB\perp SD\). Tính khoảng cách d từ điểm B đến mặt phẳng (MAC).

Đề: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC.

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC. A. \(d = \frac{{a\sqrt 6 }}{2}\) B. \(d = \frac{{a\sqrt 3 }}{2}\) C. \(d =a\sqrt{6}\) D. \(d … [Đọc thêm...] vềĐề: Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính khoảng cách d giữa hai đường thẳng SA và BC.

Đề: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là:

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là: A. \(\frac{{2a}}{3}\)  B. … [Đọc thêm...] vềĐề: Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt 3 }}{4}.\) Khoảng cách giữa hai đường thẳng AA’ và BC là:

Đề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB). A. \(\frac{{6\sqrt {13} a}}{{13}}\)   B. \(\frac{{6\sqrt {13} a}}{7}\) C.  \(\frac{{4\sqrt … [Đọc thêm...] vềĐề: Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, D là trung điểm BC. Biết SAD là tam giác đều và mặt phẳng (SAD) vuông góc với mặt phẳng (ABC). Tính khoảng cách từ C đến mặt phẳng (SAB).

Đề: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC. 

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC.  A. \(d = 3a\sqrt {\frac{{13}}{{129}}} .\) B. \(d = \frac{4}{3}a\sqrt … [Đọc thêm...] vềĐề: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho \(HB = 2HA.\) Cạnh SC tạo với mặt đáy (ABCD) một góc bằng \({60^o}.\) Tính khoảng cách d giữa hai đường thẳng AD và SC. 

Đề: Cho hình chóp  có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a.

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp  có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a. A. \(d = \frac{{a\sqrt 3 }}{7}\) B. \(d= \frac{{a\sqrt 3 }}{5}\) C. \(d = … [Đọc thêm...] vềĐề: Cho hình chóp  có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a.

Đề: Cho hình chóp  có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a.

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp  có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a. A. \(d = \frac{{a\sqrt 3 }}{7}\) B. \(d= \frac{{a\sqrt 3 }}{5}\) C. \(d = … [Đọc thêm...] vềĐề: Cho hình chóp  có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a.

Đề: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Khi đó, khoảng cách từ S đến mặt đáy (ABC) bằng

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Khi đó, khoảng cách từ S đến mặt đáy (ABC) bằng A. a/2 B. \(a\sqrt{3}\) C. \(\frac{a\sqrt{3}}{2}\) D. \(2a\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời … [Đọc thêm...] vềĐề: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Khi đó, khoảng cách từ S đến mặt đáy (ABC) bằng

Đề: Cho hình chóp S.ABCD có đáy là hình vuông; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy; \(BC = a\sqrt 3\). Tính khoảng cách h từ điểm A đến mặt phẳng (SCD).

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho hình chóp S.ABCD có đáy là hình vuông; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy; \(BC = a\sqrt 3\). Tính khoảng cách h từ điểm A đến mặt phẳng (SCD). A. \(h = \frac{{3a}}{{\sqrt 7 }}\) B. \(h = \frac{{a\sqrt 2 }}{3}\) C. \(h = \frac{{a\sqrt 6 }}{3}\) D. \(h = … [Đọc thêm...] vềĐề: Cho hình chóp S.ABCD có đáy là hình vuông; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy; \(BC = a\sqrt 3\). Tính khoảng cách h từ điểm A đến mặt phẳng (SCD).

Đề: Cho lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông, AB = BC = 1; AA' = \(\sqrt{2}.\) M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM; B'C? 

Ngày 22/05/2019 Thuộc chủ đề:Trắc nghiệm Khối đa diện Tag với:Trắc nghiệm tính khoảng cách HHKG

Câu hỏi: Cho lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông, AB = BC = 1; AA' = \(\sqrt{2}.\) M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM; B'C?  A. \(d = \frac{1}{\sqrt{7}}\) B. \(d = \frac{2}{\sqrt{7}}\) C. \(d = \sqrt{7}\) D. \(d = \frac{1}{7}\) Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề: Cho lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông, AB = BC = 1; AA' = \(\sqrt{2}.\) M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM; B'C? 

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.