Phép thử ngẫu nhiên - Là phép thử mà ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể có của phép thử ấy. Ta gọi tắt phép thử ngẫu nhiên là phép thử. - Tập hợp mọi kết quả của một phép thử được gọi là không gian mẫu, kí hiệu là \(\Omega \). Biến cố - Là một tập con của không gian mẫu, kí hiệu là \(A,B,...\) - Tập hợp mọi kết … [Đọc thêm...] vềBài 4. Phép thử và biến cố – Chương 2 – Đại số 11
Kết quả tìm kiếm cho: ty so
Bài 3. Nhị thức Niu-tơn – Chương 2 – Đại số 11
Kiến thức cần nhớ - Công thức nhị thức Niu-tơn: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \) \(= C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\) - Quy ước: \({a^0} = {b^0} = 1\) Một số dạng toán thường gặp Dạng 1: Tìm hệ số của \({x^k}\) trong khai triển Phương pháp chung: … [Đọc thêm...] vềBài 3. Nhị thức Niu-tơn – Chương 2 – Đại số 11
Bài 2. Hoán vị – Chỉnh hợp – Tổ hợp – Chương 2 – Đại số 11
Hoán vị Tập hợp hữu hạn \(A\) có \(n\) phần tử \(\left( {n \ge 1} \right)\). Mỗi cách sắp thứ tự các phần tử của \(A\) được gọi là một hoán vị của \(n\) phần tử đó. Số các hoán vị khác nhau của \(n\) phần tử là: \(P = n\left( {n - 1} \right)\left( {n - 2} \right)...2.1 = n!\) Ví dụ: Có bao nhiêu cách xếp \(3\) bạn vào một bàn có \(3\) chỗ ngồi? Giải: Mỗi cách xếp … [Đọc thêm...] vềBài 2. Hoán vị – Chỉnh hợp – Tổ hợp – Chương 2 – Đại số 11
Bài 1. Quy tắc đếm – Chương 2 – Đại số 11
Quy tắc cộng Có \(k\) phương án \({A_1},{A_2},{A_3},...,{A_k}\) để thực hiện công việc. Trong đó: - Có \({n_1}\) cách thực hiện phương án \({A_1}\), - Có \({n_2}\) cách thực hiện phương án \({A_2}\) … - Có \({n_k}\) cách thực hiện phương án \({A_k}\). Khi đó, số cách để thực hiện công việc là: \({n_1} + {n_2} + ... + {n_k}\) cách. Nếu \(A\) và \(B\) là hai … [Đọc thêm...] vềBài 1. Quy tắc đếm – Chương 2 – Đại số 11
Bài 3: Một số phương trình lượng giác thường gặp – Chương 1 – Đại số 11
Phương trình quy về phương trình bậc nhất đối với một hàm số lượng giác Phương pháp chung: - Bước 1: Biến đổi các phương trình đã cho về dạng tích \(A.B = 0\) hoặc sử dụng các công thức biến đổi tổng thành tích, tích thành tổng, nhân đôi, nhân ba,… - Bước 2: Giải các phương trình lượng giác cơ bản, tìm nghiệm và kiểm tra điều kiện (nếu có). Ví dụ: Giải phương … [Đọc thêm...] vềBài 3: Một số phương trình lượng giác thường gặp – Chương 1 – Đại số 11
Bài 2: Phương trình lượng giác cơ bản – Chương 1 – Đại số 11
Phương trình lượng giác cơ bản a) Phương trình \(\sin x = m\). +) Nếu \(\left| m \right| > 1\) thì phương trình vô nghiệm. +) Nếu \(\left| m \right| \le 1\) thì phương trình \( \Leftrightarrow \left[ \begin{array}{l}x = \arcsin m + k2\pi \\x = \pi - \arcsin m + k2\pi \end{array} \right.\) Đặc biệt: \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha … [Đọc thêm...] vềBài 2: Phương trình lượng giác cơ bản – Chương 1 – Đại số 11
Bài 1: Hàm số lượng giác – Chương 1 – Đại số 11
Hàm số tuần hoàn Hàm số \(y = f\left( x \right)\) có TXĐ \(D\) được gọi là hàm số tuần hoàn nếu có số \(T \ne 0\) sao cho: a)\(\forall x \in D\)đều có \(x - T \in D,x + T \in D\). b)\(\forall x \in D\)đều có \(f\left( {x + T} \right) = f\left( x \right)\). Số \(T > 0\) nhỏ nhất thỏa mãn các tính chất trên được gọi là chu kì của hàm số tuần hoàn \(y = f\left( x … [Đọc thêm...] vềBài 1: Hàm số lượng giác – Chương 1 – Đại số 11
Bài 3. Tích của vectơ với một số – Chương 1 – Hình học 10
1. Định nghĩa Tích của vectơ $\overrightarrow a $ với số thực \(k \ne 0\) là một vectơ, kí hiệu là $k\overrightarrow a $, cùng hướng với $\overrightarrow a $ nếu $k > 0$, ngược hướng với $\overrightarrow a $ nếu $k < 0$ và có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\) Quy ước: $0\overrightarrow a = \overrightarrow 0 $ và $k\overrightarrow 0 … [Đọc thêm...] vềBài 3. Tích của vectơ với một số – Chương 1 – Hình học 10
Ôn tập chương 2 – Đại số 10
I. HÀM SỐ 1. Định nghĩa Cho \(D \subset \mathbb{R},\,\,D \ne \emptyset \). Hàm số \(f\) xác định trên $D$ là một qui tắc đặt tương ứng mỗi số \(x \in D\) với một và chỉ một số \(y \in \mathbb{R}\). 2. Tập xác định Tập xác định của hàm số $y = f\left( x \right)$ là tập hợp tất cả các số thực $x$ sao cho biểu thức \(f\left( x \right)\) có nghĩa. 3. Sự … [Đọc thêm...] vềÔn tập chương 2 – Đại số 10
Bài 3. Hàm số bậc hai – Chương 2 – Đại số 10
1. Hàm số bậc hai a. Định nghĩa - Hàm số bậc hai là hàm số được cho bằng biểu thức có dạng \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\) - TXĐ: \(D = R\). b. Đồ thị hàm số bậc hai - Có dáng là đường Parabol có đỉnh \(\left( { - \dfrac{b}{{2a}}; - \dfrac{\Delta }{{4a}}} \right),\Delta = {b^2} - 4ac\). - Trục đối xứng là đường thẳng \(x = - … [Đọc thêm...] vềBài 3. Hàm số bậc hai – Chương 2 – Đại số 10