• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Bài 2: Phương trình lượng giác cơ bản – Chương 1 – Đại số 11

Đăng ngày: 31/10/2019 Biên tập: admin Thuộc chủ đề:Toán lớp 11 Tag với:Học chương 1 đại số 11, Phương trình lượng giác

Mục lục:

  1. Phương trình lượng giác cơ bản
  2. Phương trình bậc nhất đối với một hàm số lượng giác
  3. Ví dụ 1:
    1. Lời giải:
  4. Ví dụ 2:
    1. Lời giải: 
  5. Ví dụ 3:
    1. Lời giải: 
  6. Ví dụ 4:
    1. Lời giải: 
adsense

Phương trình lượng giác cơ bản

a) Phương trình  \(\sin x = m\).

+) Nếu \(\left| m \right| > 1\) thì phương trình vô nghiệm.

+) Nếu \(\left| m \right| \le 1\) thì phương trình \( \Leftrightarrow \left[ \begin{array}{l}x = \arcsin m + k2\pi \\x = \pi  – \arcsin m + k2\pi \end{array} \right.\)

Đặc biệt: \(\sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  – \alpha  + k2\pi \end{array} \right.\left( {k \in Z} \right)\)

b) Phương trình  \(\cos x = m\).

+) Nếu \(\left| m \right| > 1\) thì phương trình vô nghiệm.

+) Nếu \(\left| m \right| \le 1\) thì phương trình \( \Leftrightarrow \left[ \begin{array}{l}x = \arccos m + k2\pi \\x =  – \arccos m + k2\pi \end{array} \right.\)

Đặc biệt: \(\cos x = \cos \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x =  – \alpha  + k2\pi \end{array} \right.\left( {k \in Z} \right)\)

c) Phương trình  \(\tan x = m\).

Phương trình luôn có nghiệm \(x = \arctan m + k\pi \).

Đặc biệt: \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \left( {k \in Z} \right)\)

d) Phương trình  \(\cot x = m\).

Phương trình luôn có nghiệm \(x = {\mathop{\rm arccot}\nolimits} m + k\pi \).

Đặc biệt: \(\cot x = \cot \alpha  \Leftrightarrow x = \alpha  + k\pi \left( {k \in Z} \right)\)

e) Các trường hợp đặc biệt

\( + )\sin x = 0 \Leftrightarrow x = k\pi ;\) \(\cos x = 0 \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \)

\( + )\sin x =  – 1 \Leftrightarrow x =  – \dfrac{\pi }{2} + k2\pi ;\) \(\cos x =  – 1 \Leftrightarrow x = \pi  + k2\pi \)

\( + )\sin x = 1 \Leftrightarrow x = \dfrac{\pi }{2} + k2\pi ;\)  \(\cos x = 1 \Leftrightarrow x = k2\pi \)

Phương trình bậc nhất đối với một hàm số lượng giác

– Phương trình \(at + b = 0\left( {a,b \in R,a \ne 0} \right)\) với \(t = \sin x\left( {\cos x,\tan x,\cot x} \right)\) là phương trình bậc nhất đối với một hàm số lượng giác \(\sin ,\cos ,\tan ,\cot \).

– Cách giải: Biến đổi \(at + b = 0 \Leftrightarrow t =  – \dfrac{b}{a}\) và giải phương trình lượng giác cơ bản.

Một số chú ý khi giải phương trình

– Khi giải phương trình lượng giác có chứa \(\tan ,\cot \), chứa ẩn ở mẫu, căn bậc chẵn,…thì cần đặt điều kiện cho ẩn.

– Khi giải xong phương trình thì cần chú ý thử lại đáp án, kiểm tra điều kiện.

Ví dụ 1:

Giải các phương trình sau:

a) \(\sin \left( {\frac{{2x}}{3} – \frac{\pi }{3}} \right)=0\).

b) \(\sin x = \sin \frac{\pi }{{12}}\).

c) \(\sin 3x = \frac{1}{2}\).

d) \(\sin x = \frac{2}{3}\).

Lời giải:

a) \(\sin \left( {\frac{{2x}}{3} – \frac{\pi }{3}} \right)=0\Leftrightarrow \frac{{2x}}{3} – \frac{\pi }{3} = k\pi \Leftrightarrow \,\frac{{2x}}{3} = \frac{\pi }{3} + k\pi\)

\(\Leftrightarrow \,x = \frac{\pi }{2} + k\frac{{3\pi }}{2}\), \(k \in \mathbb{Z}.\)

Vậy phương trình có các nghiệm là: \(\,x = \frac{\pi }{2} + k\frac{{3\pi }}{2}\),  \(k \in \mathbb{Z}.\)

b) \(\sin x = \sin \frac{\pi }{{12}} \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{12}} + k2\pi \\ x = \pi – \frac{\pi }{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{12}} + k2\pi \\ x = \frac{{11\pi }}{{12}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

adsense

Vậy phương trình có các nghiệm là \(x = \frac{\pi }{{12}} + k2\pi ,k\in \mathbb{Z}\) và \(x = \frac{11\pi }{{12}} + k2\pi ,k\in \mathbb{Z}.\)

c) \(\sin 3x = \frac{1}{2} \Leftrightarrow \sin 3x = \sin \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l} 3x = \frac{\pi }{6} + k2\pi \\ 3x = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{18}} + k\frac{{2\pi }}{3}\\ x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình có các nghiệm là \(x = \frac{\pi }{{18}} + k\frac{{2\pi }}{3}, k \in \mathbb{Z}\) và \(x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}, k \in \mathbb{Z}\).

d) \(\sin x = \frac{2}{3} \Leftrightarrow \left[ \begin{array}{l} x = \arcsin \frac{2}{3} + k2\pi \\ x = \pi – \arcsin \frac{2}{3} + k2\pi \end{array} \right.\left( {k \in\mathbb{Z} } \right)\)

Vậy phương trình có các nghiệm là \(x = \arcsin \frac{2}{3} + k2\pi,k \in \mathbb{Z}\) và \(x = \pi – \arcsin \frac{2}{3} + k2\pi, k \in \mathbb{Z}.\)

Ví dụ 2:

Giải các phương trình sau:

a) \(\cos \left( {\frac{{3x}}{2} – \frac{\pi }{4}} \right) = – \frac{1}{2}\).

b) \(\cos \left( {x + {{45}^0}} \right) = \frac{{\sqrt 2 }}{2}\).

Lời giải: 

a) \(\cos \left( {\frac{{3x}}{2} – \frac{\pi }{4}} \right) = – \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l} \frac{{3x}}{2} – \frac{\pi }{4} = \frac{{2\pi }}{3} + k2\pi \\ \frac{{3x}}{2} – \frac{\pi }{4} = – \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)\(\Leftrightarrow \left[ \begin{array}{l} x = \frac{{11\pi }}{{18}} + k\frac{{4\pi }}{3}\\ x = – \frac{{5\pi }}{{18}} + k\frac{{4\pi }}{3} \end{array} \right.{\mkern 1mu} ,{\mkern 1mu} k \in \mathbb{Z}.\)

Vậy phương trình có các nghiệm là: \({x = \frac{{11\pi }}{{18}} + k\frac{{4\pi }}{3}}, k \in \mathbb{Z}\) và \({x = – \frac{{5\pi }}{{18}} + k\frac{{4\pi }}{3}}, k \in \mathbb{Z}.\)

b) \(\cos \left( {x + {{45}^0}} \right) = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {x + {{45}^0}} \right) = c{\rm{os}}{45^0}\)

\(\Leftrightarrow \left[ \begin{array}{l} x + {45^0} = {45^0} + k{360^0}\\ x + {45^0} = – {45^0} + k{360^0} \end{array} \right.\)\(\Leftrightarrow \left[ \begin{array}{l} x = {45^0} + k{360^0}\\ x = – {90^0} + k{360^0} \end{array} \right.\left( {k \in \mathbb{Z}} \right).\)

Vậy phương trình có các nghiệm là: \({x = {{45}^0} + k{{360}^0}}, k \in \mathbb{Z}\) và \({x = – {{90}^0} + k{{360}^0}}, k \in \mathbb{Z}.\)

Ví dụ 3:

Giải các phương trình sau:

a) \(\tan x = \tan \frac{\pi }{3}\).

b) \(\tan (x – {15^0}) = \frac{{\sqrt 3 }}{3}\).

Lời giải: 

a) \(\tan x = \tan \frac{\pi }{3} \Leftrightarrow x = \frac{\pi }{3} + k\pi ,\left( {k \in\mathbb{Z} } \right).\)

b) \(\tan (x – {15^0}) = \frac{{\sqrt 3 }}{3} \Leftrightarrow\) \(\tan (x – {15^0}) = \tan {30^0}\Leftrightarrow x = {45^0} + k{180^0} , k \in \mathbb{Z}.\)

Vậy các nghiệm của phương trình là \(x = {45^0} + k{180^0} , k \in \mathbb{Z}.\)

Ví dụ 4:

Giải các phương trình sau:

a) \(\cot 4x = \,\cot \frac{{2\pi }}{7}\).

b) \(\cot 4x = – 3.\)

c) \(\cot \left( {2x – \frac{\pi }{6}} \right) = \frac{1}{{\sqrt 3 }}\).

Lời giải: 

a) \(\cot 4x = \,\cot \frac{{2\pi }}{7}\) \(\Leftrightarrow 4x = \frac{{2\pi }}{7}\, + \,k\pi \Leftrightarrow \,x = \frac{\pi }{{14}} + \,k\frac{\pi }{4},\,k \in \mathbb{Z}.\)

Vậy các nghiệm của phương trình là: \(x = \frac{\pi }{{14}} + \,k\frac{\pi }{4};\,k \in \mathbb{Z}.\)

b) \(\cot 4x = – 3 \Leftrightarrow 4x = \arctan \left( { – 3} \right) + k\pi \Leftrightarrow x = \frac{1}{4}\arctan \left( { – 3} \right) + k\frac{\pi }{4},\left( {k \in \mathbb{Z}} \right).\)

Vậy các nghiệm của phương trình là: \(x = \frac{1}{4}\arctan \left( { – 3} \right) + k\frac{\pi }{4},\left( {k \in \mathbb{Z}} \right).\)

c) \(\cot \left( {2x – \frac{\pi }{6}} \right) = \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot \left( {2x – \frac{\pi }{6}} \right) = \cot \frac{\pi }{6}\)

\(\Leftrightarrow 2x – \frac{\pi }{6} = \frac{\pi }{6} + k\pi \Leftrightarrow 2x = \frac{\pi }{3} + k\pi\)

\(\Leftrightarrow x = \frac{\pi }{6} + k\frac{\pi }{2},\left( {k \in\mathbb{Z} } \right).\)

Vậy các nghiệm của phương trình là: \(x = \frac{\pi }{6} + k\frac{\pi }{2},\left( {k \in\mathbb{Z} } \right).\)

Thuộc chủ đề:Toán lớp 11 Tag với:Học chương 1 đại số 11, Phương trình lượng giác

Bài liên quan:

  1. Tự học Bài Một số phương trình lượng giác thường gặp – Toán 11
  2. Tự học Bài Phương trình lượng giác cơ bản – Toán 11
  3. Ôn Chương 1 – Đại số 11
  4. Bài 3: Một số phương trình lượng giác thường gặp – Chương 1 – Đại số 11
  5. Bài 1: Hàm số lượng giác – Chương 1 – Đại số 11

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Học toán lớp 11




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.