Câu hỏi: CÂU HỎI: Họ nguyên hàm của hàm số \(f(x)=x \cos 2 x\) A. \(\begin{aligned} &\frac{x \sin 2 x}{2}+\frac{\cos 2 x}{4}+C . \end{aligned}\) B. \(x \sin 2 x-\frac{\cos 2 x}{2}+C .\) C. \(x \sin 2 x+\frac{\cos 2 x}{2}+C\) D. \(\frac{x \sin 2 x}{2}-\frac{\cos 2 x}{4}+C \text { . }\) Lời Giải: Đây là các câu trắc nghiệm về NGUYÊN HÀM mức độ 2,3 - VẬN … [Đọc thêm...] vềCÂU HỎI: Họ nguyên hàm của hàm số \(f(x)=x \cos 2 x\)
Kết quả tìm kiếm cho: ty so
CÂU HỎI: Biết là một nguyên hàm của hàm số \(f(x)=2 x+2^{x} \text { thoả mãn } F(0)=0\) . Ta có F(x) bằng
Câu hỏi: CÂU HỎI: Biết là một nguyên hàm của hàm số \(f(x)=2 x+2^{x} \text { thoả mãn } F(0)=0\) . Ta có F(x) bằng A. \(x^{2}+\frac{2^{x}-1}{\ln 2}\) B. \(x^{2}+\frac{1-2^{x}}{\ln 2}\) C. \(1+\left(2^{x}-1\right) \ln 2\) D. \(x^{2}+2^{x}-1\) Lời Giải: Đây là các câu trắc nghiệm về NGUYÊN HÀM mức độ 2,3 - VẬN DỤNG \(\text { Ta có: } \int\left(2 x+2^{x}\right) … [Đọc thêm...] vềCÂU HỎI: Biết là một nguyên hàm của hàm số \(f(x)=2 x+2^{x} \text { thoả mãn } F(0)=0\) . Ta có F(x) bằng
CÂU HỎI: \(\text { Hàm số } f(x) \text { thỏa mãn } f^{\prime}(x)=x e^{x} \text { là }\)
Câu hỏi: CÂU HỎI: \(\text { Hàm số } f(x) \text { thỏa mãn } f^{\prime}(x)=x e^{x} \text { là }\) A. \((x-1) e^{x}+C \) B. \(x^{2}+\frac{e^{x+1}}{x+1}+C\) C. \(x^{2} e^{x}+C\) D. \((x+1) e^{x}+C\) Lời Giải: Đây là các câu trắc nghiệm về NGUYÊN HÀM mức độ 2,3 - VẬN DỤNG \(\begin{array}{l} \text { Ta có } f(x)=\int f^{\prime}(x) \mathrm{d} x=\int x e^{x} … [Đọc thêm...] vềCÂU HỎI: \(\text { Hàm số } f(x) \text { thỏa mãn } f^{\prime}(x)=x e^{x} \text { là }\)
CÂU HỎI: Tất cả các nguyên hàm của hàm số \(f(x)=\frac{x}{\sin ^{2} x} \text { trên khoảng }(0 ; \pi)\) là:
Câu hỏi: CÂU HỎI: Tất cả các nguyên hàm của hàm số \(f(x)=\frac{x}{\sin ^{2} x} \text { trên khoảng }(0 ; \pi)\) là: A. \(\begin{array}{l} -x \cot x+\ln (\sin x)+C \end{array}\) B. \(x \cot x-\ln |\sin x|+C \text { . }\) C. \(x \cot x+\ln |\sin x|+C . \) D. \(-x \cot x-\ln (\sin x)+C\) Lời Giải: Đây là các câu trắc nghiệm về NGUYÊN HÀM mức độ 2,3 - VẬN … [Đọc thêm...] vềCÂU HỎI: Tất cả các nguyên hàm của hàm số \(f(x)=\frac{x}{\sin ^{2} x} \text { trên khoảng }(0 ; \pi)\) là:
CÂU HỎI: Cho \(F(x)=\frac{a}{x}(\ln x+b)\) là một nguyên hàm của hàm số \(f(x)=\frac{1+\ln x}{x^{2}}, \text { trong đó } a, b \in \mathbb{Z} \text { . }\)Tính S=a+b.
Câu hỏi: CÂU HỎI: Cho \(F(x)=\frac{a}{x}(\ln x+b)\) là một nguyên hàm của hàm số \(f(x)=\frac{1+\ln x}{x^{2}}, \text { trong đó } a, b \in \mathbb{Z} \text { . }\)Tính S=a+b. A. -2 B. 1 C. 2 D. 0 Lời Giải: Đây là các câu trắc nghiệm về NGUYÊN HÀM mức độ 2,3 - VẬN DỤNG \(\begin{array}{l} \text { Ta có } I=\int f(x) \mathrm{d} x=\int\left(\frac{1+\ln … [Đọc thêm...] vềCÂU HỎI: Cho \(F(x)=\frac{a}{x}(\ln x+b)\) là một nguyên hàm của hàm số \(f(x)=\frac{1+\ln x}{x^{2}}, \text { trong đó } a, b \in \mathbb{Z} \text { . }\)Tính S=a+b.
CÂU HỎI: \(\begin{equation} \text { Nguyên hàm } F(x) \text { của hàm số } f(x)=\sin ^{2} 2 x \cdot \cos ^{3} 2 x \text { thỏa } F\left(\frac{\pi}{4}\right)=0 \text { là } \end{equation}\)
Câu hỏi: CÂU HỎI: \(\begin{equation} \text { Nguyên hàm } F(x) \text { của hàm số } f(x)=\sin ^{2} 2 x \cdot \cos ^{3} 2 x \text { thỏa } F\left(\frac{\pi}{4}\right)=0 \text { là } \end{equation}\) A. \(\begin{equation} \begin{array}{ll} F(x)=\frac{1}{6} \sin ^{3} 2 x-\frac{1}{10} \sin ^{5} 2 x+\frac{1}{15} . \end{array} \end{equation}\) B. \(F(x)=\frac{1}{6} \sin ^{3} … [Đọc thêm...] vềCÂU HỎI: \(\begin{equation} \text { Nguyên hàm } F(x) \text { của hàm số } f(x)=\sin ^{2} 2 x \cdot \cos ^{3} 2 x \text { thỏa } F\left(\frac{\pi}{4}\right)=0 \text { là } \end{equation}\)
CÂU HỎI: Cho hàm số f(x) liên tục trên R và thỏa mãn \(\begin{equation} \int \frac{f(\sqrt{x+1})}{\sqrt{x+1}} \mathrm{~d} x=\frac{2(\sqrt{x+1}+3)}{x+5}+C . \end{equation}\) Nguyên hàm của hàm số \(\begin{equation} f(2 x) \text { trên tập } \mathbb{R}^{+} \end{equation}\) là
Câu hỏi: CÂU HỎI: Cho hàm số f(x) liên tục trên R và thỏa mãn \(\begin{equation} \int \frac{f(\sqrt{x+1})}{\sqrt{x+1}} \mathrm{~d} x=\frac{2(\sqrt{x+1}+3)}{x+5}+C . \end{equation}\) Nguyên hàm của hàm số \(\begin{equation} f(2 x) \text { trên tập } \mathbb{R}^{+} \end{equation}\) là A. \(\begin{equation} \frac{x+3}{2\left(x^{2}+4\right)}+C . \end{equation}\) B. … [Đọc thêm...] vềCÂU HỎI: Cho hàm số f(x) liên tục trên R và thỏa mãn \(\begin{equation} \int \frac{f(\sqrt{x+1})}{\sqrt{x+1}} \mathrm{~d} x=\frac{2(\sqrt{x+1}+3)}{x+5}+C . \end{equation}\) Nguyên hàm của hàm số \(\begin{equation} f(2 x) \text { trên tập } \mathbb{R}^{+} \end{equation}\) là
CÂU HỎI: Cho hàm số \(F(x)=\int x \sqrt{x^{2}+1} \mathrm{~d} x . \text { Biết } F(0)=\frac{4}{3}, \text { tính } F(2 \sqrt{2}) .\)
Câu hỏi: CÂU HỎI: Cho hàm số \(F(x)=\int x \sqrt{x^{2}+1} \mathrm{~d} x . \text { Biết } F(0)=\frac{4}{3}, \text { tính } F(2 \sqrt{2}) .\) A. 3 B. \(\frac{85}{4} .\) C. 19 D. 10 Lời Giải: Đây là các câu trắc nghiệm về NGUYÊN HÀM mức độ 2,3 - VẬN DỤNG \(\begin{array}{l} \text { Đặt } t=\sqrt{x^{2}+1} \Rightarrow t^{2}=x^{2}+1 \Rightarrow t \mathrm{~d} t=x … [Đọc thêm...] vềCÂU HỎI: Cho hàm số \(F(x)=\int x \sqrt{x^{2}+1} \mathrm{~d} x . \text { Biết } F(0)=\frac{4}{3}, \text { tính } F(2 \sqrt{2}) .\)
CÂU HỎI: Cho F(x) là một nguyên hàm của hàm số \(f(x)=\frac{1}{x \ln x} \text { thỏa mãn } F\left(\frac{1}{\mathrm{e}}\right)=2 \text { và } F(\mathrm{e})=\ln 2\). Giá trị của biểu thức \(F\left(\frac{1}{\mathrm{e}^{2}}\right)+F\left(\mathrm{e}^{2}\right)\) bằng
Câu hỏi: CÂU HỎI: Cho F(x) là một nguyên hàm của hàm số \(f(x)=\frac{1}{x \ln x} \text { thỏa mãn } F\left(\frac{1}{\mathrm{e}}\right)=2 \text { và } F(\mathrm{e})=\ln 2\). Giá trị của biểu thức \(F\left(\frac{1}{\mathrm{e}^{2}}\right)+F\left(\mathrm{e}^{2}\right)\) bằng A. \(3\ln 2+2\) B. \(\ln 2+2\) C. \(\ln 2+1\) D. \(2\ln 2+1\) Lời Giải: Đây là các câu trắc … [Đọc thêm...] vềCÂU HỎI: Cho F(x) là một nguyên hàm của hàm số \(f(x)=\frac{1}{x \ln x} \text { thỏa mãn } F\left(\frac{1}{\mathrm{e}}\right)=2 \text { và } F(\mathrm{e})=\ln 2\). Giá trị của biểu thức \(F\left(\frac{1}{\mathrm{e}^{2}}\right)+F\left(\mathrm{e}^{2}\right)\) bằng
CÂU HỎI: Cho hàm số f(x) thỏa mãn đồng thời các điều kiện \(f^{\prime}(x)=x+\sin x \text { và } f(0)=1\). Tìm f(x)?
Câu hỏi: CÂU HỎI: Cho hàm số f(x) thỏa mãn đồng thời các điều kiện \(f^{\prime}(x)=x+\sin x \text { và } f(0)=1\). Tìm f(x)? A. \(\begin{array}{l} f(x)=\frac{x^{2}}{2}-\cos x+2 . \end{array}\) B. \( f(x)=\frac{x^{2}}{2}-\cos x-2 \text { . }\) C. \(f(x)=\frac{x^{2}}{2}+\cos x . \) D. \( f(x)=\frac{x^{2}}{2}+\cos x+\frac{1}{2} \text { . }\) Lời Giải: Đây là các … [Đọc thêm...] vềCÂU HỎI: Cho hàm số f(x) thỏa mãn đồng thời các điều kiện \(f^{\prime}(x)=x+\sin x \text { và } f(0)=1\). Tìm f(x)?