• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Logarit và hàm số lôgarit / Gọi \(x,\,y\) là các số lớn hơn 1 thỏa mãn đẳng thức \(1 + \,{\log _{10y}}x = \,{\log _y}x\) và \(A = \frac{x}{{{y^{11}}}}\) đạt giá trị nhỏ nhất thì \(x.y = {10^k}\). Khi đó \(k\) thuộc khoảng nào trong các khoảng sau?

Gọi \(x,\,y\) là các số lớn hơn 1 thỏa mãn đẳng thức \(1 + \,{\log _{10y}}x = \,{\log _y}x\) và \(A = \frac{x}{{{y^{11}}}}\) đạt giá trị nhỏ nhất thì \(x.y = {10^k}\). Khi đó \(k\) thuộc khoảng nào trong các khoảng sau?

Ngày 02/06/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:CUC TRI LOGARIT, MAX MIN LOGARIT 2 BIEN

Gọi \(x,\,y\) là các số lớn hơn 1 thỏa mãn đẳng thức \(1 + \,{\log _{10y}}x = \,{\log _y}x\) và \(A = \frac{x}{{{y^{11}}}}\) đạt giá trị nhỏ nhất thì \(x.y = {10^k}\). Khi đó \(k\) thuộc khoảng nào trong các khoảng sau?

A. \(\left( {10;\,20} \right)\).

B. \(\left( {20;\,25} \right)\).

C. \(\left( {25;\,35} \right)\).

D. \(\left( {30;\,40} \right)\).

Lời giải:

Ta có \(1 + \,{\log _{10y}}x = \,{\log _y}x\, \Leftrightarrow \,1 + \,\frac{{\lg x}}{{\lg 10y}} = \,\frac{{\lg x}}{{\lg y}}\, \Leftrightarrow \,1 + \,\frac{{\lg x}}{{1 + \,\lg y}} = \,\frac{{\lg x}}{{\lg y}}\,\)

\( \Leftrightarrow \,\frac{{1 + \,\lg x + \,\lg y}}{{1 + \,\lg y}} = \,\frac{{\lg x}}{{\lg y}}\, \Leftrightarrow \,\left( {1 + \,\lg x + \,\lg y} \right).\lg y\, = \,\left( {1 + \,\lg y} \right).\,\lg x\)

\( \Leftrightarrow \,\lg y\, + \,{\left( {\lg y} \right)^2} = \,\lg x\)

Mặt khác: \(A = \frac{x}{{{y^{11}}}}\) suy ra: \(\lg A = \,\,\lg x – \lg {y^{11}}\, \Leftrightarrow \,\lg A = \,\lg x – \,11\lg y\)

\(\lg A = \,\lg x – \,11\lg y = \,\left[ {\lg y\, + \,{{\left( {\lg y} \right)}^2}} \right] – \,11\lg y = \,{\left( {\lg y} \right)^2} – \,10\lg y\) \( = \,{\left( {\lg y\, – 5} \right)^2} – \,25\, \ge \, – 25;\)

Suy ra \(A\,\, \ge \,\,{10^{ – 25}};\,\,\min A = \,\,{10^{ – 25}}\) \( \Leftrightarrow \,\left\{ \begin{array}{l}\lg y\, = 5\\\lg y\, + \,{\left( {\lg y} \right)^2} = \,\lg x\end{array} \right.\, \Leftrightarrow \,\left\{ \begin{array}{l}y = \,{10^5}\\\lg x = \,30\end{array} \right.\, \Leftrightarrow \,\left\{ \begin{array}{l}y = \,{10^5}\\x = \,{10^{30}}\end{array} \right.\,\)\( \Rightarrow \,x.y = {10^{35}} \Rightarrow k = 35\)

Vậy \(k \in \left( {30;\,40} \right)\).

===========

Tương tự Câu 46 TÌM MAX MIN BIỂU THỨC LOGARIT 2 BIẾN – VẬN DỤNG CAO – PHÁT TRIỂN Toán TK 2024

Bài liên quan:

  1. Cho hai số thực \(x,y\) không âm thỏa mãn \({x^2} + 2x – y + 1 = {\log _2}\frac{{\sqrt {2y + 1} }}{{x + 1}}\). Khi biếu thức \(P = {e^{2x – 1}} + 4{x^2} – 2y + 1\)đạt giá trị nhỏ nhất, giá trị của biểu thức \(2y – x\) bằng

  2. Biết \(x,y\)là các số thực thoả mãn \({10^{2x – {y^2} + 3}} \ge {a^{2x – \log a}}\) với mọi số thực \(a > 0\). Tìm giá trị lớn nhất của biểu thức \(P = 3x + 4y – 3\) bằng

  3. Cho phương trình \({2^{\left( {x + 2} \right)\left( {2x + 1} \right)}}.\ln \left[ {2\left( {x + 2} \right)x + 3} \right] = {2^{y + {x^2} + x + 1}}.\ln \sqrt {{x^2} + y + 1} \) (1) với \(y \ge 0\). Khi \(2{x^2} – y\) đạt giá trị nhỏ nhất thì giá trị của biểu thức \(S = y – x\) bằng

  4. Cho \(2\) số thực \(x,y\) thỏa mãn \({\log _5}{\left[ {(x + 1)\left( {y + 1} \right)} \right]^{y + 1}} = 25 – \left( {x – 1} \right)\left( {y + 1} \right)\). Giá trị nhỏ nhất của biểu thức \(P = x + 3y\) là

  5. Cho hai số thực dương \(x,y\) thỏa mãn: \(3 + \ln \frac{{x + y + 1}}{{3xy}} = 9xy – 3x – 3y\). Khi biểu thức \(P = xy\) đạt giá trị nhỏ nhất, tính giá trị biểu thức \(T = 2024x – 2023y\).

  6. Xét các số thực dương \(x,y\) thoả mãn \({\log _2}\left( {x + 2y} \right) + {x^2} – 2{y^2} + xy – x + y = 0\) và \(x > y\). Khi biểu thức \(xy + 2\) đạt giá trị lớn nhất, giá trị của biểu thức \(2x + 4y\) bằng

  7. Có bao nhiêu giá trị nguyên \(y \le 2024\) để ứng với mỗi \(y\) tồn tại hai số thực \(x\) thỏa mãn bất phương trình \({e^{{x^2}}} + \left( {y + \ln x} \right).{e^{y + \ln x}} \le \left( {{x^3} + x} \right){e^y}\)?

  8. Cho các số thực \(x \ne 0,y > 0\) thỏa mãn \({\log _2}\frac{y}{{2{x^2}}} + {y^2} = {x^4} – 1\). Gọi \(S\) là tập hợp các giá trị của tham số \(m\) để với mỗi \(m\) có đúng \(3\) cặp số \(\left( {x;y} \right)\) thỏa mãn \(\frac{m}{2}\left( {{2^{y – 2x}} + {2^{ – y + 4x}}} \right) = {\frac{m}{4}^2} + {2^{2x}}\). Tổng các phần tử trong \(S\) bằng

  9. Cho \(x,y\) nguyên và \(0 \le x \le 2024\) thỏa mãn \({\log _2}\left( {\frac{{2x + 6}}{{x – 1}}} \right) + \frac{8}{{x – 1}} = y – 2 + {2^y}\). Khi đó \(x + 2y\) bằng:

  10. Xét các số thực dương \(x\), \(y\) thỏa mãn \({\log _5}{\left[ {\left( {x + 3} \right)y} \right]^y} = 125 – xy\). Khi biểu thức \(x + 5y\) đạt giá trị nhỏ nhất, giá trị của biểu thức \(5x – y\) bằng

  11. Cho x, y là các số thực dương thỏa mãn \({\log _3}\frac{{2x + y + 1}}{{x + y}} = x + 2y.\)Khi biểu thức \(T = \frac{1}{x} + \frac{2}{{\sqrt y }}\) đạt giá trị nhỏ nhất, giá trị của biểu thức \(S = x – 2y\) bằng

  12. Xét các số thực \(x\), \(y\) thỏa mãn \({3^{{x^2} + {y^2} + 1}} \le \left( {2{x^2} + 2{y^2} – 4x + 3} \right){.9^x}\). Biết giá trị lớn nhất của biểu thức \(P = \frac{{3x – 4y}}{{2x + y + 1}}\) bằng \(a\sqrt {113} + b\) với \(a,b \in \mathbb{Q}\). Khi đó \(3a – b\) bằng

  13. Gọi \(x,y\) là các số thực dương thỏa mãn \({\log _{\sqrt 3 }}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x(x – 3) + y(y – 3) + xy\) sao cho biểu thức \(P = \frac{{4x + 5y – 3}}{{x + 2y + 1}}\) đạt giá trị lớn nhất. Khi đó \(2023x + 2024y\) bằng

  14. Có bao nhiêu số nguyên \(m \in \left( { – 5;5} \right)\) để bất phương trình sau \({\log _3}\frac{{2{x^2} – x + 1}}{{4{x^2} – x + 4 – 2m}} < – 2\left( {{x^2} – x + m} \right)\) có nghiệm?

  15. Xét các số thực dương \(x,y\) thoả mãn \({\log _3}{\left[ {\left( {x + 5} \right)y} \right]^y} = 243 – xy\). Khi biểu thức \(x + 3y\) đạt giá trị nhỏ nhất, giá trị của biểu thức \(2x + y\) bằng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.