• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Chứng minh rằng:$C_{n}^{0}-\frac{1}{3}C_{n}^{1}+\frac{1}{5}C_{n}^{2}+…+\frac{(-1)^{n}}{2n+1}C_{n}^{n}\geq \sqrt{\frac{3n+1}{4n^{2}+4n+1}}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

adsense
Đề bài: Chứng minh rằng:$C_{n}^{0}-\frac{1}{3}C_{n}^{1}+\frac{1}{5}C_{n}^{2}+…+\frac{(-1)^{n}}{2n+1}C_{n}^{n}\geq \sqrt{\frac{3n+1}{4n^{2}+4n+1}}$

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng:$C_{n}^{0}-\frac{1}{3}C_{n}^{1}+\frac{1}{5}C_{n}^{2}+…+\frac{(-1)^{n}}{2n+1}C_{n}^{n}\geq \sqrt{\frac{3n+1}{4n^{2}+4n+1}}$
Lời giải

adsense

Xét: $\int\limits^{1}_{0}(1-x^{2})^{n}dx,n \in N^{*}$
* Đặt: $x=\sin t \Rightarrow  dx=\cos tdt$
  $\Rightarrow \int\limits^{1}_{0}(1-x^{2})^{n}dx=\int\limits^{\frac{\pi}{2}}_{0} \cos ^{2n+1}t.dt=I_{2n+1}$
* Đặt: $u=\cos ^{2n}t \Rightarrow du=-2n \sin t.\cos t ^{2n-1}dt$
$dv=\cos tdt \Rightarrow v=\sin t \Rightarrow I_{2n+1}=[\cos ^{2n}t.\sin t]^{\frac{\pi}{2}}_{0}+2n\int\limits^{\frac{\pi}{2}}_{0}\sin ^{2}t \cos ^{2n-1}t.dt$
$=2n \int\limits^{\frac{\pi}{2}}_{0} (\cos ^{2n-1}t-\cos ^{2n+1}t).dt=2nI_{2n-1}-2nI_{2n+1}$
$\Rightarrow \frac{I_{2n+1}}{I_{2n-1}}=\frac{2n}{2n+1}$
Suy ra: $\frac{I_{3}}{I_{1}}.\frac{I_{5}}{I_{3}}…\frac{I_{2n}}{I_{2n+1}}=\frac{2}{3}.\frac{4}{5}…\frac{2n}{2n+1}$
$\Rightarrow I_{2n+1}=\frac{2}{3}.\frac{4}{5}…\frac{2n}{2n+1}.I_{1}$
Mà: $I_{1}=\int\limits^{1}_{0} dx=1$
$\Rightarrow I_{2n+1}=\frac{2}{3}.\frac{4}{5}…\frac{2n}{2n+1} (1)$
và: $ I_{2n+1}=\int\limits^{1}_{0} (1-x^{2})^{n}dx=\int\limits^{1}_{0}\sum\limits_{k=0}^n C^{k}_{n}.(-1)^{k}.x^{2k}dx$
$=\sum\limits_{k=0}^n C^{k}_{n}.\frac{(-1)^{k}}{2k+1} (2)$
Từ $(1)$ và $(2)$ $\Rightarrow C_{n}^{0}-\frac{1}{3}C_{n}^{1}+\frac{1}{5}C_{n}^{2}+…+\frac{(-1)^{n}}{2n+1}C_{n}^{n}=\frac{2}{1}.\frac{4}{3}…\frac{2n}{2n-1}\frac{1}{2n+1}$
$\geq \sqrt{3n+1}.\frac{1}{2n+1}= \sqrt{\frac{3n+1}{4n^{2}+4n+1}}$.Đúng.
(Theo nguyên lý quy nạp:ta chứng minh bài toán nhỏ:$ \frac{1}{2}.\frac{3}{4}…\frac{2n-1}{2n} \leq \frac{1}{\sqrt{3n+1}}$
*$n=1$: BĐT luôn đúng.
*$n=k$: Giả sử BĐT đúng,tức là:
$\frac{1}{2}.\frac{3}{4}…\frac{2k-1}{2k}.\frac{2k+1}{2k+2}\leq \frac{1}{\sqrt{3k+1}}.\frac{2k+1}{2k+2}(3)$
$(\frac{1}{\sqrt{3k+1}}.\frac{2k+1}{2k+2})^{2}=\frac{(2k+1)^{2}}{(3k+1)(4k^{2}+8k+4)}=\frac{(2k+1)^{3}}{12k^{3}+28k^{2}+20k+4}$
$=\frac{(2k+1)^{2}}{(12k^{3}+28k^{2}+19k+4)+k}=\frac{(2k+1)^{2}}{(2k+1)^{2}(3k+4)+k}$
$Từ $(3)$ và $(4)$ suy ra: $\frac{1}{2}.\frac{3}{4}…\frac{2n-1}{2n}\leq \frac{1}{\sqrt{3n+1}}$)
$\Rightarrow$ (ĐPCM)

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Chứng minh rằng với mọi số $a,b,c\in [0,1]$ ta luôn có:  $(1+a+b+c)^{2}\geq 4(a^2+b^2+c^2)$.
  2. Đề bài: Cho 3 số thực $x,y,z$ thỏa mãn $\begin{cases}x+y+z=5 \\ xy+yz+zx=8 \end{cases}$ Chứng minh rằng : $1 \leq x,y,z \leq \frac{7}{3}$
  3. Đề bài: Cho 3 số thực $x,y,z$ thỏa mãn : $\left\{ \begin{array}{l} x^{2}+xy+y^{2}=3  \\ y^{2} +yz+z^{2}=16  \end{array} \right. $Chứng minh rằng $-8 \leq xy+yz+zx \leq 8$
  4. Đề bài: Cho  $\begin{cases}x,y,z,t \in (-\frac{\pi}{2};\frac{\pi}{2}) \\\sin x+\sin y+\sin z+\sin t= 1\\\cos 2x+\cos 2y+\cos 2z+\cos 2t \geq \frac{10}{3}\end{cases}$Chứng minh rằng:  $ x,y,z,t \in [0;\frac{\pi}{6}]$
  5. Đề bài: Cho $f,g:[0,1] \to  [0,1] $ liên tục.Chứng minh:$(\int\limits_{0}^{1}f(x).g(x)dx)^{2}\leq (\int\limits_{0}^{1}f(x)dx).(\int\limits_{0}^{1}g(x)dx)$
  6. Đề bài: Gọi \( x_{1},x_{2} \) là các nghiệm của phương trình  \(x^{2}+2kx+a^{2}=0   (a\neq 0) \)Định k để \( \left(\frac{x_{1}}{x_{2}}\right)^{2}+\left(\frac{x_{2}}{x_{1}}\right)^{2}\geq5 \)
  7. Đề bài: Cho $a,b,c\in (0,1)$, chứng minh rằng ít nhất một trong cách bất đẳng thức sau là sai:                   $a(1-b)>\frac{1}{4},b(1-c)>\frac{1}{4},c(1-a)>\frac{1}{4}$.
  8. Đề bài: Chứng minh rằng:   $(x^2+3)(y^2+3)(z^2+3)\geq \frac{4}{27}(3xy+3yz+3zx)^2    (1) $ trong đó $x,y,z$ là các số thực.
  9. Đề bài:  Chứng minh rằng với mọi số nguyên $n \ge 2$ ta đều có:                    $2 < {\left( {2 + \frac{1}{n}} \right)^n} < 3$
  10. Đề bài: Chứng minh rằng:$\frac{1}{2}.\frac{3}{4}…\frac{2n-1}{2n}\leq \frac{1}{\sqrt{3n+1}},\forall n\in N^{*}$
  11. Đề bài: Cho  $ \begin{cases}\alpha_1,\alpha_2, … , \alpha_n \in (0;\frac{\pi}{2}) ,  n>3\\\sum\limits_{i=1}^n=\pi \end{cases}$Chứng minh rằng:    $(n-\sum\limits_{i=1}^n {\tan^2 \alpha_i} )/(n+ \sum\limits_{i=1}^n {\tan^2 \alpha_i} )\leq \cos \frac{2\pi}{n}$
  12. Đề bài: Chứng minh rằng:$\sqrt{a}\leq \underbrace { \sqrt{a+\sqrt{a+…+\sqrt{a}}}}_{n}< \frac{1+\sqrt{4a+1}}{2}$,với $\forall a \geq 0,n \in Z, n\geq 2$
  13. Đề bài: Cho $\begin{cases}0
  14. Đề bài: Chứng minh bất đẳng thức:$1,71
  15. Đề bài: Cho $n$ số thực $a_{1}, a_2, …,a_n$ thuộc đoạn $[-1;1]$ thoả mãn:  $a_{1}^3+ a_2^3+…a_n^3=0$.Chứng minh rằng $a_{1}+ a_2+…a_n\leq \frac{n}{3}$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.