• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Blog / Có bao nhiêu số nguyên \(x\) thỏa mãn\(\left( {{3^{{x^3}}} – \frac{1}{{{9^{x + 6}}}}} \right).\left( {{{\log }_5}\left( {x + 4} \right) – 2} \right) \le 0\). \(\left( 1 \right)\)

Có bao nhiêu số nguyên \(x\) thỏa mãn\(\left( {{3^{{x^3}}} – \frac{1}{{{9^{x + 6}}}}} \right).\left( {{{\log }_5}\left( {x + 4} \right) – 2} \right) \le 0\). \(\left( 1 \right)\)

Ngày 05/08/2021 Thuộc chủ đề:Blog, Trắc nghiệm Phương trình và bất phương trình Logarit, Trắc nghiệm Phương trình và bất phương trình mũ Tag với:Ham so Logarit VDC, HAM SO MU VDC, TN THPT 2021

Câu hỏi:
Có bao nhiêu số nguyên \(x\) thỏa mãn\(\left( {{3^{{x^3}}} – \frac{1}{{{9^{x + 6}}}}} \right).\left( {{{\log }_5}\left( {x + 4} \right) – 2} \right) \le 0\). \(\left( 1 \right)\)

A. \(25\).

B. \(26\).

C. \(24\).

D. Vô số.

LỜI GIẢI CHI TIẾT

Tác giả: Hương Đào

Điều kiện xác định: \(x > – 4\).

Với điều kiện \(x > – 4\) ta có:

\(\left( 1 \right)\)\( \Leftrightarrow \left( {{3^{{x^3}}} – {9^{ – x – 6}}} \right).\left( {{{\log }_5}\left( {x + 4} \right) – 2} \right) \le 0\)\( \Leftrightarrow \left( {{3^{{x^3}}} – {3^{ – 2x – 12}}} \right).\left( {{{\log }_5}\left( {x + 4} \right) – 2} \right) \le 0\).

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{3^{{x^3}}} – {3^{ – 2x – 12}} \ge 0\\{\log _5}\left( {x + 4} \right) – 2 \le 0\end{array} \right.\\\left\{ \begin{array}{l}{3^{{x^3}}} – {3^{ – 2x – 12}} \le 0\\{\log _5}\left( {x + 4} \right) – 2 \ge 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{x^3} \ge – 2x – 12\\0 < x + 4 \le 25\end{array} \right.\\\left\{ \begin{array}{l}{x^3} \le – 2x – 12\\x + 4 \ge 25\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{x^3} + 2x + 12 \ge 0\\ – 4 < x \le 21\end{array} \right.\left( 2 \right)\\\left\{ \begin{array}{l}{x^3} + 2x + 12 \le 0\\x \ge 21\end{array} \right.\left( 3 \right)\end{array} \right.\)

Xét hàm số: \(f\left( x \right) = {x^3} + 2x + 12\)

Ta có:\(f’\left( x \right) = 3{x^2} + 2 > 0{\rm{ }}\forall x \in \mathbb{R}\)

Suy ra hàm số \(f\left( x \right)\)đồng biến trên\(\mathbb{R}\). Lại có \(f\left( { – 2} \right) = 0\) do đó

\(\left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}x \ge – 2\\ – 4 < x \le 21\end{array} \right.\)\( \Leftrightarrow – 2 \le x \le 21\).

\(\left( 3 \right) \Leftrightarrow \left\{ \begin{array}{l}x \le – 2\\x \ge 21\end{array} \right.\).

Đối chiếu điều kiện \(x \in \mathbb{Z}\)ta được\(x \in \left\{ { – 2; – 1;0;…;21} \right\}\).

Tổng số \(24\) giá trị nguyên của \(x\) thỏa mãn.

Vậy chọn đáp án

C.

=======

Bài liên quan:

  1. Có bao nhiêu cặp số nguyên (x;y) thỏa mãn \({\log _3}\left( {{x^2} + {y^2} + x} \right) + {\log _2}\left( {{x^2} + {y^2}} \right) \le {\log _3}x + {\log _2}\left( {{x^2} + {y^2} + 24x} \right)?\)
  2. Xét các số thực dương x, y thỏa mãn \({\log _2}\left( {\dfrac{{4x + 2y}}{{2{x^2} + {y^2}}}} \right) \ge 2\left( {{x^2} – x + 1} \right) + \left( {{y^2} – y – 1} \right)\). Tìm giá trị lớn nhất của biểu thức P = x – y + 3xy.
  3. Đề toán 2022 [Mức độ 4] Xét tất cả các số thực  \(x,y\) sao cho \({a^{4x – {{\log }_5}{a^2}}} \le {25^{40 – {y^2}}}\) với mọi số thực dương \(a\). Giá trị lớn nhất của biểu thức \(P = {x^2} + {y^2} + x – 3y\) bằng

  4. Đề toán 2022 [2H3-2.3-3] Trong không gian \(Oxyz\), cho điểm \(A\left( {2;1; – 1} \right)\). Gọi \(\left( P \right)\) là mặt phẳng chứa trục \(Oy\) sao cho khoảng cách từ \(A\) đến \(\left( P \right)\) là lớn nhất. Phương trình của \(\left( P \right)\) là

  5. Đề toán 2022 [2D2-4.4-4]  Xét tất cả các số thực \(x\), \(y\) sao cho \({49^{9 – {y^2}}} \ge {a^{4x – {{\log }_7}{a^2}}}\) với mọi số thực dương \(a\). Giá trị lớn nhất của biểu thức \(P = {x^2} + {y^2} + 4x – 3y\) bằng.

  6. Đề toán 2022 Xét tất cả các số thực \(x,y\)sao cho \({27^{5 – {y^2}}} \ge {a^{6x – {{\log }_3}{a^3}}}\)với số thực dương a. Giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} – 4x + 8y\)bằng

  7. Đề toán 2022 Xét tất cả các số thực \(x\), \(y\) sao cho \({8^{9 – {y^2}}} \ge {a^{6x – {{\log }_2}{a^3}}}\) với mọi số thực dương \(a\). Giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} – 6x – 8y\) bằng

  8. Đề toán 2022 [Mức độ 3] Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {{3^b} – 3} \right)\left( {a{{.2}^b} – 16} \right) < 0?\)

  9. Đề toán 2022 [Mức độ 3] Có bao nhiêu số nguyên dương \(a\) sao cho với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn\(\left( {{4^b} – 1} \right)\left( {a{{.3}^b} – 10} \right) < 0\)

  10. Đề toán 2022 [Mức độ 3] Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng ba số nguyên \(b\) thoả mãn \(\left( {{3^b} – 3} \right)\left( {a{{.2}^b} – 18} \right) < 0\)?

  11. Đề toán 2022 [2D2-6.1-3] Có bao nhiêu số nguyên dương \(a\) sao cho ứng với mỗi \(a\) có đúng hai số nguyên \(b\) thỏa mãn \(\left( {{5^b} – 1} \right)\left( {a{{.2}^b} – 5} \right) < 0\)

  12. Tính giá trị của biểu thức \(T = \log \left[ {\frac{{f(96) – f(69) – 241}}{2}} \right]\)
  13. Cho các số thực \(x,y,a,b\) thỏa mãn điều kiện \(x > 1,y > 1,a > 0,b > 0\), \(x + y = xy\). Biết rằng biểu thức \(P = \frac{{y{a^x} + x{b^y}}}{{abxy}}\) đạt giá trị nhỏ nhất \(m\) khi \(a = {b^q}\). Khẳng định nào sau đây đúng ?
  14. Số giá trị nguyên của tham số\(m\) để phương trình

    \(\sqrt {\log _2^2x + 3{{\log }_{\frac{1}{2}}}{x^2} – 7} = m\left( {{{\log }_4}{x^2} – 7} \right)\) có nghiệm thuộc khoảng \(\left( {256;\, + \infty } \right)\)là:

  15. Có bao nhiêu giá trị của nguyên của tham số \(m\) để phương trình

    \(\log _3^23x + {\log _3}x + m – 1 = 0\) có đúng 2 nghiệm phân biệt thuộc khoảng \(\left( {0\,;\,1} \right)\).

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Sách Giáo Khoa lớp 11
  • Sách Giáo Khoa lớp 7
  • Sách Giáo Khoa lớp 2
  • Sách Giáo Khoa lớp 6
  • Sách Giáo Khoa lớp 12
  • Sách Giáo Khoa lớp 9
  • Sách Giáo Khoa lớp 5

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.