• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) bất phương trình \(\left( {\ln {x^2} – \sqrt 2 } \right)\left( {\ln x – y} \right) < 0\) có nghiệm nguyên \(x\) và số nghiệm nguyên \(x\) không vượt quá \(10\)?

Đăng ngày: 26/06/2021 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Logarit nang cao, PT Mu nang cao, TN THPT 2021, Tuong tu cau 40 de toan minh hoa

DẠNG TOÁN 40 BẤT PHƯƠNG TRÌNH MŨ LOGARIT VẬN DỤNG – phát triển theo đề tham khảo Toán 2021

 

Theo đề tham khảo Toán 2021 của Bộ GD&ĐT

ĐỀ BÀI:

Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y\) bất phương trình \(\left( {\ln {x^2} – \sqrt 2 } \right)\left( {\ln x – y} \right) < 0\) có nghiệm nguyên \(x\) và số nghiệm nguyên \(x\) không vượt quá \(10\)?

A. \(2\). 

B. \(3\). 

C. \(0\). 

D. \(1\).

LỜI GIẢI CHI TIẾT

Điều kiện: \(x > 0\).

Ta có: \(\left( {\ln {x^2} – \sqrt 2 } \right)\left( {\ln x – y} \right) < 0\) 

\( \Leftrightarrow \left( {2\ln x – \sqrt 2 } \right)\left( {\ln x – y} \right) < 0\)

\( \Leftrightarrow \frac{{\sqrt 2 }}{2} < \ln x < y\)

\( \Leftrightarrow {{\rm{e}}^{\frac{{\sqrt 2 }}{2}}} < x < \,\,{{\rm{e}}^y}\).

Yêu cầu bài toán \( \Leftrightarrow 3 < {{\rm{e}}^y} \le 13 \Leftrightarrow \ln 3 < y \le \ln 13\).

\(y\) nguyên dương nên \(y = 2\).

Vậy có 1 giá trị \(y\) nguyên dương thỏa yêu cầu bài toán.

 

Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Logarit nang cao, PT Mu nang cao, TN THPT 2021, Tuong tu cau 40 de toan minh hoa

Bài liên quan:

  1. Tìm tất cả các giá trị của tham số m để phương trình \({\left( {7 – 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} – 1}}\) có 4 nghiệm
  2. Có bao nhiêu số nguyên $x$ thỏa mãn $\log_{3} \frac{\left(x^{2}-4 x\right)^{2}}{4096}<\log_{2} \frac{x^{2}-4 x}{27}$ ?
  3. Có bao nhiêu cặp số nguyên $(x ; y)$ thỏa mãn \(\log {2}\left(x^{2}+y^{2}+4 x\right)+\log {3}\left(x^{2}+y^{2}\right) \leq \log {2} x+\log {3}\left(15 x^{2}+15 y^{2}+48 x\right) ?\)
  4. Có bao nhiêu số nguyên \(x\), \(x \in \left[ { – 10;10} \right]\) thỏa mãn \({3.3^x} + 2x + 1 + \cos 2y = {3^{{{\sin }^2}y}}\)?
  5. Có bao nhiêu cặp số nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn \(1 \le x \le 2022\) và \(x + {x^2} – {25^y} = {5^y}\).
  6. Tính tổng bình phương tất cả các nghiệm của phương trình phương trình \({5^{{x^2} – 2}} = {5^{{x^4} – {x^2} – 1}} + {\left( {{x^2} – 1} \right)^2}\).
  7. Tìm điều kiện của x để bất phương trình mũ logarit đúng với y thoả mãn điều kiện – file word
  8. 39 câu trắc nghiệm VDC Mũ – Logarit
  9. Cắt hình trụ \((T)\) bởi mặt phẳng song song với trục và cách trục một khoảng bằng \(2a\) , ta được thiết diện là một hình vuông có diện tích bẳng \(16{a^2}\) . Diện tích xung quanh của \((T)\) bằng

  10. Xét các số phức \(z\) và \(w\) thay đổi thỏa mãn \(\left| z \right| = \left| w \right| = 3\) và \(\left| {z – w} \right| = 3\sqrt 2 \) . Giá trị nhỏ nhất của \(P = \left| {z + 1 + i} \right| + \left| {w – 2 + 5i} \right|\) bằng
  11. Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng
  12. Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\) . Đường thẳng đi qua \(A\) , cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là

  13. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2}\left( {a,b,c \in \mathbb{R}} \right).\) Hàm số \(y = f’\left( x \right)\) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình \(2f\left( x \right) + 3 = 0\)

  14. Trên tập hợp các số phức, xét phương trình \({z^2} + 2az + {b^2} + 2 = 0\) ( \(a,\,b\) là các tham số thực). Có bao nhiêu cặp số thực \((a\,;\,b)\) sao cho phương trình đó có hai nghiệm \({z_1},\,{z_2}\) thỏa mãn \({z_1} + 2i{z_2} = 3 + 3i\) ?

  15. Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) – {{\log }_2}\left( {x + 21} \right)} \right]\left( {16 – {2^{x – 1}}} \right) \ge 0\) ?

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.