• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Cho hình chóp \(S.ABC\)có đáy là tam giác cân tại \(A,AB = AC = a,\widehat {BAC} = 120^\circ \), \(SA\)vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\) bằng

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình chóp \(S.ABC\)có đáy là tam giác cân tại \(A,AB = AC = a,\widehat {BAC} = 120^\circ \), \(SA\)vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\) bằng A. \(\frac{{19\pi {a^3}\sqrt {19} }}{{48}}\). B. \(\frac{{19\pi {a^3}\sqrt {19} }}{{24}}\). C. … [Đọc thêm...] vềCho hình chóp \(S.ABC\)có đáy là tam giác cân tại \(A,AB = AC = a,\widehat {BAC} = 120^\circ \), \(SA\)vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Thể tích khối cầu ngoại tiếp hình chóp \(S.ABC\) bằng

Cho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác đều cạnh \(2\). Hình chiếu vuông góc của \(B’\) trên mặt phẳng đáy trùng trung điểm \(H\) của cạnh \(AB\), biết góc giữa \(B’H\) và mặt phẳng \(\left( {BCC’B’} \right)\) bằng \(45^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho khối lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(2\). Hình chiếu vuông góc của \(B'\) trên mặt phẳng đáy trùng trung điểm \(H\) của cạnh \(AB\), biết góc giữa \(B'H\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \(45^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho. A. \(V = 3\). B. \(V = \frac{3}{2}\). C. \(V = \frac{{\sqrt 3 }}{2}\). D. \(V = … [Đọc thêm...] vềCho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác đều cạnh \(2\). Hình chiếu vuông góc của \(B’\) trên mặt phẳng đáy trùng trung điểm \(H\) của cạnh \(AB\), biết góc giữa \(B’H\) và mặt phẳng \(\left( {BCC’B’} \right)\) bằng \(45^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.

Cho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác vuông cân tại \(B\) có \(AC = 3\sqrt 2 \). Hình chiếu vuông góc của \(A’\) trên mặt phẳng đáy là điểm \(H\) thuộc cạnh \(AC\) sao cho \(HC = 2HA\), biết góc giữa \(\left( {ABB’A’} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho khối lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(B\) có \(AC = 3\sqrt 2 \). Hình chiếu vuông góc của \(A'\) trên mặt phẳng đáy là điểm \(H\) thuộc cạnh \(AC\) sao cho \(HC = 2HA\), biết góc giữa \(\left( {ABB'A'} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho. A. \(V = 9\). B. \(V = \frac{9}{2}\). C. \(V … [Đọc thêm...] vềCho khối lăng trụ \(ABC.A’B’C’\) có đáy là tam giác vuông cân tại \(B\) có \(AC = 3\sqrt 2 \). Hình chiếu vuông góc của \(A’\) trên mặt phẳng đáy là điểm \(H\) thuộc cạnh \(AC\) sao cho \(HC = 2HA\), biết góc giữa \(\left( {ABB’A’} \right)\) và mặt phẳng đáy bằng \(60^\circ \). Tính thể tích \(V\) của khối lăng trụ đã cho.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(AC = 2a\), góc \(\widehat {BAD} = 120^\circ \). Biết \(SA = SB = SC\) và góc giữa mặt phẳng \(\left( {SCD} \right)\) với mặt đáy bằng \(45^\circ \). tính thể tích khối chóp \(S.ABCD\).

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(AC = 2a\), góc \(\widehat {BAD} = 120^\circ \). Biết \(SA = SB = SC\) và góc giữa mặt phẳng \(\left( {SCD} \right)\) với mặt đáy bằng \(45^\circ \). tính thể tích khối chóp \(S.ABCD\). A. \(V = \frac{{4\sqrt 3 {a^3}}}{3}\). B. \(V = \frac{{4{a^3}}}{3}\). C. \(4\sqrt 3 {a^3}\). D. \(4{a^3}\). Lời … [Đọc thêm...] vềCho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi, \(AC = 2a\), góc \(\widehat {BAD} = 120^\circ \). Biết \(SA = SB = SC\) và góc giữa mặt phẳng \(\left( {SCD} \right)\) với mặt đáy bằng \(45^\circ \). tính thể tích khối chóp \(S.ABCD\).

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = a\), \(AD = 2a\). Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng \(\left( {ABCD} \right)\) bằng \(45^\circ \). Thể tích của khối chóp \(S.ABCD\) là

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = a\), \(AD = 2a\). Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng \(\left( {ABCD} \right)\) bằng \(45^\circ \). Thể tích của khối chóp \(S.ABCD\) là A. \(\frac{{{a^3}\sqrt {17} }}{9}\). B. \(\frac{{{a^3}\sqrt {17} }}{{\sqrt 3 }}\). C. \(\frac{{{a^3}\sqrt {17} … [Đọc thêm...] vềCho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = a\), \(AD = 2a\). Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng \(\left( {ABCD} \right)\) bằng \(45^\circ \). Thể tích của khối chóp \(S.ABCD\) là

Cho hình lăng trụ \(ABC.A’B’C’\) có đáy \(S.ABCD\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = a\sqrt 3 \). Hình chiếu vuông góc của đỉnh \(A’\) lên \(\left( {ABC} \right)\) trùng với tâm của đường tròn ngoại tiếp của tam giác \(ABC\). Trên cạnh \(AC\) lấy điểm \(M\) sao cho \(CM = 2MA\). Biết khoảng cách giữa hai đường thẳng \(A’M\) và \(BC\) bằng \(\frac{a}{2}\). Tính thể tích \(V\)của khối lăng trụ đã cho.

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(S.ABCD\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = a\sqrt 3 \). Hình chiếu vuông góc của đỉnh \(A'\) lên \(\left( {ABC} \right)\) trùng với tâm của đường tròn ngoại tiếp của tam giác \(ABC\). Trên cạnh \(AC\) lấy điểm \(M\) sao cho \(CM = 2MA\). Biết khoảng cách giữa hai đường thẳng \(A'M\) và \(BC\) bằng \(\frac{a}{2}\). Tính thể … [Đọc thêm...] vềCho hình lăng trụ \(ABC.A’B’C’\) có đáy \(S.ABCD\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = a\sqrt 3 \). Hình chiếu vuông góc của đỉnh \(A’\) lên \(\left( {ABC} \right)\) trùng với tâm của đường tròn ngoại tiếp của tam giác \(ABC\). Trên cạnh \(AC\) lấy điểm \(M\) sao cho \(CM = 2MA\). Biết khoảng cách giữa hai đường thẳng \(A’M\) và \(BC\) bằng \(\frac{a}{2}\). Tính thể tích \(V\)của khối lăng trụ đã cho.

Cho lăng trụ \(ABC.A\prime B\prime C\prime \) có đáy là tam giác đều cạnh\(a\), hình chiếu vuông góc của điểm lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(ABC.\) Biết khoảng cách giữa hai đường thẳng và \(BC\) bằng \(\frac{{a\sqrt 3 }}{4}\). Tính theo \(a\) thể tích của khối lăng trụ đã cho.

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho lăng trụ \(ABC.A\prime B\prime C\prime \) có đáy là tam giác đều cạnh\(a\), hình chiếu vuông góc của điểm lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(ABC.\) Biết khoảng cách giữa hai đường thẳng và \(BC\) bằng \(\frac{{a\sqrt 3 }}{4}\). Tính theo \(a\) thể tích của khối lăng trụ đã cho. A. \(\frac{{{a^3}\sqrt 3 }}{3}\). B. … [Đọc thêm...] vềCho lăng trụ \(ABC.A\prime B\prime C\prime \) có đáy là tam giác đều cạnh\(a\), hình chiếu vuông góc của điểm lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(ABC.\) Biết khoảng cách giữa hai đường thẳng và \(BC\) bằng \(\frac{{a\sqrt 3 }}{4}\). Tính theo \(a\) thể tích của khối lăng trụ đã cho.

Cho chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), ABCD là hình vuông cạnh a. Khoảng cách từ A đến (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích chóp \(S.ABCD\)

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), ABCD là hình vuông cạnh a. Khoảng cách từ A đến (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích chóp \(S.ABCD\) A. \({a^3}\sqrt 3 \). B. \(\frac{{{a^3}\sqrt 3 }}{3}\). C. \(\frac{{{a^3}\sqrt 3 }}{6}\). D. \(\frac{{{a^3}\sqrt {21} }}{{21}}\) Lời giải: Kẻ \(AH \bot SB\). + Ta có \(\left. … [Đọc thêm...] vềCho chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\), ABCD là hình vuông cạnh a. Khoảng cách từ A đến (SBC) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính thể tích chóp \(S.ABCD\)

Cho chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), vuông cân tại A, \(BC = a\sqrt 2 \). Biết khoảng cách từ điểm A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích khối chóp \(S.ABC\)

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), vuông cân tại A, \(BC = a\sqrt 2 \). Biết khoảng cách từ điểm A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích khối chóp \(S.ABC\) A. \(\frac{{{a^3}}}{2}\). B. \(\frac{{{a^3}}}{6}\). C. \(\frac{{3{a^3}\sqrt 2 }}{{16}}\). D. \(\frac{{3{a^3}\sqrt 2 }}{{48}}\). Lời giải: Kẻ \(AM \bot … [Đọc thêm...] vềCho chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), vuông cân tại A, \(BC = a\sqrt 2 \). Biết khoảng cách từ điểm A đến mặt phẳng (SBC) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích khối chóp \(S.ABC\)

Cho hình chóp \(S.ABC\) có \(SA = a,\,BC = a\sqrt 2 \), thể tích bằng \(\frac{{{a^3}\sqrt {11} }}{6}\). Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\).

Ngày 04/06/2023 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru

Cho hình chóp \(S.ABC\) có \(SA = a,\,BC = a\sqrt 2 \), thể tích bằng \(\frac{{{a^3}\sqrt {11} }}{6}\). Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\). A. \(\frac{{2a\sqrt {11} }}{{\sqrt {23} }}\). B. \(\frac{{2a\sqrt {11} }}{{\sqrt {46} }}\). C. \(\frac{{\sqrt 3 a}}{2}\). D. \(\frac{{a\sqrt {21} }}{{\sqrt {46} }}\). Lời giải: Gọi \(M,\,N\) lần lượt … [Đọc thêm...] vềCho hình chóp \(S.ABC\) có \(SA = a,\,BC = a\sqrt 2 \), thể tích bằng \(\frac{{{a^3}\sqrt {11} }}{6}\). Tính khoảng cách từ \(S\) đến \(\left( {ABC} \right)\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 311
  • Trang 312
  • Trang 313
  • Trang 314
  • Trang 315
  • Interim pages omitted …
  • Trang 1754
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.