• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bài tập Hàm số

Đề: Gọi $(C)$ là đồ thị hàm số $y = \frac{1}{x}$, và $(D)$ là đường thẳng có phương trình $y = ax + b$.1) $a, b$ phải thỏa mãn điều kiện gì để đường thẳng $(D)$ tiếp xúc với $(C)$?2) Giả sử điều kiện trên được nghiệm đúng. Khi đó $(D)$ cắt $Ox$ và $Oy$ tại $M$ và $N$.a) Chứng tỏ rằng tam giác $OMN$ có diện tích không đổi.b) Chứng tỏ rằng điểm giữa của đoạn $MN$ là tiếp điểm của $(D)$ với $(C)$.c) Khi nào thì khoảng cách từ gốc tọa độ $O$ đến $(D)$ là lớn nhất

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Gọi $(C)$ là đồ thị hàm số $y = \frac{1}{x}$, và $(D)$ là đường thẳng có phương trình $y = ax + b$.1) $a, b$ phải thỏa mãn điều kiện gì để đường thẳng $(D)$ tiếp xúc với $(C)$?2) Giả sử điều kiện trên được nghiệm đúng. Khi đó $(D)$ cắt $Ox$ và $Oy$ tại $M$ và $N$.a) Chứng tỏ rằng tam giác $OMN$ có diện tích không đổi.b) Chứng tỏ rằng điểm giữa của đoạn $MN$ là tiếp … [Đọc thêm...] vềĐề: Gọi $(C)$ là đồ thị hàm số $y = \frac{1}{x}$, và $(D)$ là đường thẳng có phương trình $y = ax + b$.1) $a, b$ phải thỏa mãn điều kiện gì để đường thẳng $(D)$ tiếp xúc với $(C)$?2) Giả sử điều kiện trên được nghiệm đúng. Khi đó $(D)$ cắt $Ox$ và $Oy$ tại $M$ và $N$.a) Chứng tỏ rằng tam giác $OMN$ có diện tích không đổi.b) Chứng tỏ rằng điểm giữa của đoạn $MN$ là tiếp điểm của $(D)$ với $(C)$.c) Khi nào thì khoảng cách từ gốc tọa độ $O$ đến $(D)$ là lớn nhất

Đề: Tính đạo hàm của các hàm số:a) $y = \sqrt[ 5]{ \ln ^3 5x} $;                            b) $y = \sqrt[ 3]{\frac{1+x^3}{1-x^3}  } $c) $y = \left ( \frac{x}{b} \right)^a . \left (\frac{a}{x}\right)^b  $ với $a> 0, b > 0$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Đạo hàm

Đề bài: Tính đạo hàm của các hàm số:a) $y = \sqrt[ 5]{ \ln ^3 5x} $;                            b) $y = \sqrt[ 3]{\frac{1+x^3}{1-x^3}  } $c) $y = \left ( \frac{x}{b} \right)^a . \left (\frac{a}{x}\right)^b  $ với $a> 0, b > 0$ Lời giải a) $y = \sqrt[ 5]{\ln^3( 5x )} = (\ln (5x))^ \frac{3}{5}  $ $\Rightarrow y' = \frac{3}{5} (\ln 5x)^ {-\frac{2}{5}}. (\ln 5x)' = … [Đọc thêm...] vềĐề: Tính đạo hàm của các hàm số:a) $y = \sqrt[ 5]{ \ln ^3 5x} $;                            b) $y = \sqrt[ 3]{\frac{1+x^3}{1-x^3}  } $c) $y = \left ( \frac{x}{b} \right)^a . \left (\frac{a}{x}\right)^b  $ với $a> 0, b > 0$

Đề: Trên parabol $y = {x^2}$, lấy hai điểm $A( – 1, 1), B(3 , 9)$ và  một điểm $M$ thuộc cung  . Xác định vị trí của $M$ sao cho tam giác $ABM$ có diện tích lớn nhất.

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Trên parabol $y = {x^2}$, lấy hai điểm $A( - 1, 1), B(3 , 9)$ và  một điểm $M$ thuộc cung  . Xác định vị trí của $M$ sao cho tam giác $ABM$ có diện tích lớn nhất. Lời giải Tam giác $AMB$ có cạnh $AB$ cố định $ \Rightarrow $ diện tích $∆AMB$ lớn nhất khi và chỉ khi chiều cao $MH$ lớn nhất. Gọi ${M_o}$là tiếp điểm thuộc cung của tiếp tuyến với parabol song song với … [Đọc thêm...] vềĐề: Trên parabol $y = {x^2}$, lấy hai điểm $A( – 1, 1), B(3 , 9)$ và  một điểm $M$ thuộc cung  . Xác định vị trí của $M$ sao cho tam giác $ABM$ có diện tích lớn nhất.

Đề: $f(x) = \cos x + \sqrt{2-\cos ^2 x .} $  Tìm $Max  f(x) , Min  f(x).$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Ứng dụng hàm số vào giải toán

Đề bài: $f(x) = \cos x + \sqrt{2-\cos ^2 x .} $  Tìm $Max  f(x) , Min  f(x).$ Lời giải Tập xác định là $R$Đặt $\cos x =t.$ Điều kiện của $t: t \in [-1;1]   (A)$Hàm số $f(x)$ có dạng : $F=t+\sqrt{2-t^2} $ với  $t \in (A)$         $F' (t) = 1 - \frac{ 1}{ \sqrt{2}-t^2 }, F'(t) =0  \Leftrightarrow  t =1$         $\mathop {M{\rm{ax}}}\limits_A F = max {F(-1) ; F(1)} =2$ khi … [Đọc thêm...] vềĐề: $f(x) = \cos x + \sqrt{2-\cos ^2 x .} $  Tìm $Max  f(x) , Min  f(x).$

Đề:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$ Lời giải Với $\forall a \neq 0$ ta có $Q=ay.\frac{x+y}{a}+2zx \leq \frac{a^2y^2+(\frac{x+z}{a})^2}{2}+x^2+z^2$$\Rightarrow Q \leq \frac{a^2y^2+\frac{2(x^2+y^2)}{a^2} }{2}+x^2+z^2=\frac{a^2}{2}y+(1+\frac{1}{a^2})(x^2+z^2)       (1)$Ta chọn $a \neq 0$ sao cho … [Đọc thêm...] vềĐề:  Cho $x,y,z$ là các số thực thỏa mãn $x^2+y^2+z^2 \leq 1$Tìm giá trị lớn nhất của biểu thức $Q=xy+yz+2zx$

Đề: Cho hàm số :  $y=\sqrt{\sin x } + \sqrt{\cos x }$.  Tìm $max  y ,  min  y.$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Cho hàm số :  $y=\sqrt{\sin x } + \sqrt{\cos x }$.  Tìm $max  y ,  min  y.$ Lời giải Tập xác định của hàm số là :       $\left\{ \begin{array}{l}0 \le \sin {\rm{x }} \le 1\\0 \le \cos x \le 1          (\alpha )\end{array} \right.$       Với $x \in (\alpha )$ ta có  $\left\{ \begin{array}{l}0 \le \sqrt {\cos x} {\rm{ }} \le 1\\0 \le \sqrt {\sin x}  \le 1\end{array} … [Đọc thêm...] vềĐề: Cho hàm số :  $y=\sqrt{\sin x } + \sqrt{\cos x }$.  Tìm $max  y ,  min  y.$

Đề:  Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Đề bài:  Cho hàm số: $y = {x^3} - 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với … [Đọc thêm...] vềĐề:  Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.

Đề: Cho các số thực không âm $a,b$ thỏa mãn $a+b=1$. Tìm giá trị lớn nhất của biểu thức :       $A=16ab(a-b)^2$

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Cho các số thực không âm $a,b$ thỏa mãn $a+b=1$. Tìm giá trị lớn nhất của biểu thức :       $A=16ab(a-b)^2$ Lời giải Theo bất đẳng thức Côsi ta có biến đổi :    $A=4(4ab).(a-b)^2\leq 4[\frac{4ab+(a-b)^2}{2}]^2=(a+b)^4=1$Vậy, ta được $A_{\max=}=1$, đạt được khi:    $\begin{cases}a+b=1 \\ 4ab=(a-b)^2 \end{cases}\Leftrightarrow \begin{cases}b=1-a \\ a^2+b^2-6ab=0 … [Đọc thêm...] vềĐề: Cho các số thực không âm $a,b$ thỏa mãn $a+b=1$. Tìm giá trị lớn nhất của biểu thức :       $A=16ab(a-b)^2$

Đề: Cho hàm số:  $y = {x^4} – a{x}^3 – (2a + 1){x^2} + ax + 1$1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi  $a = 0$.2) Tìm điểm $A$ thuộc trục tung sao cho qua $A$ có thể kẻ được ba tiếp tuyến với đồ thị ở phần 1

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số:  $y = {x^4} - a{x}^3 - (2a + 1){x^2} + ax + 1$1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi  $a = 0$.2) Tìm điểm $A$ thuộc trục tung sao cho qua $A$ có thể kẻ được ba tiếp tuyến với đồ thị ở phần 1 Lời giải $1)$ Dành cho bạn đọc.$2)$ Điểm A có tọa độ $(0,{\rm{ }}{{\rm{y}}_o})$ và phương trình tiếp tuyến qua A có dạng $y = kx + {y_o}$. Hoành độ tiếp … [Đọc thêm...] vềĐề: Cho hàm số:  $y = {x^4} – a{x}^3 – (2a + 1){x^2} + ax + 1$1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi  $a = 0$.2) Tìm điểm $A$ thuộc trục tung sao cho qua $A$ có thể kẻ được ba tiếp tuyến với đồ thị ở phần 1

Đề: Cho hàm số \(y = \frac{{2{x^2} – 3x + m}}{{x – 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} – 3x + 2}}{{x – 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\)

Ngày 15/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số \(y = \frac{{2{x^2} - 3x + m}}{{x - 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} - 3x + 2}}{{x - 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\) Lời giải $1$. Bạn … [Đọc thêm...] vềĐề: Cho hàm số \(y = \frac{{2{x^2} – 3x + m}}{{x – 1}}\)$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m=2$$2$. Biện luận theo tham số $a$ về số nghiệm của phương trình \(\frac{{2{x^2} – 3x + 2}}{{x – 1}} + {\log _{\frac{1}{2}}}a = 0\)$3$. Với những giá trị nào của $m$ thì hàm số đã cho là đồng biến trên khoảng \(\left( {3; + \infty } \right)\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Trang 6
  • Interim pages omitted …
  • Trang 61
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.