• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Ứng dụng Tích phân

(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho \(D\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \ln x,\) trục hoành và hai đường thẳng \(x = 1;\;x = m,\) với \(m > 1.\) Khi hình phẳng \(D\) có diện tích bằng \(1,\) giá trị của \(m\) thuộc khoảng nào dưới đây ?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho \(D\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \ln x,\) trục hoành và hai đường thẳng \(x = 1;\;x = m,\) với \(m > 1.\) Khi hình phẳng \(D\) có diện tích bằng \(1,\) giá trị của \(m\) thuộc khoảng nào dưới đây ? A. \(\left( {\frac{7}{2};4} \right)\). B. \(\left( {3;\frac{7}{2}} \right]\). C. … [Đọc thêm...] về

(THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho \(D\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \ln x,\) trục hoành và hai đường thẳng \(x = 1;\;x = m,\) với \(m > 1.\) Khi hình phẳng \(D\) có diện tích bằng \(1,\) giá trị của \(m\) thuộc khoảng nào dưới đây ?

(Chuyên Lê Quý Đôn – Điện Biên – 2022) Xét hàm só́ \(f\left( x \right) = {e^x} + \int_0^1 x f\left( x \right){\rm{d}}x\). Giá trị của \(f\left( {\ln 2022} \right)\) bằng bao nhiêu?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Chuyên Lê Quý Đôn - Điện Biên - 2022) Xét hàm só́ \(f\left( x \right) = {e^x} + \int_0^1 x f\left( x \right){\rm{d}}x\). Giá trị của \(f\left( {\ln 2022} \right)\) bằng bao nhiêu? A. \(2022\). B. \(2021\). C. \(2023\). D. \(2024\). Lời giải: Chọn D Từ yêu cầu đề bài và đáp án, ta có thể đặt: \(f\left( x \right) = {e^x} + C\) Khi đó: … [Đọc thêm...] về

(Chuyên Lê Quý Đôn – Điện Biên – 2022) Xét hàm só́ \(f\left( x \right) = {e^x} + \int_0^1 x f\left( x \right){\rm{d}}x\). Giá trị của \(f\left( {\ln 2022} \right)\) bằng bao nhiêu?

(Đại học Hồng Đức – 2022) Cho hàm số \(f(x) = {x^3} + a{x^2} + bx + c(a,b,c \in \mathbb{R})\) có hai điểm cực trị là \( – 1\) và 1. Gọi \(y = g(x)\) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của \(f(x)\), đồng thời có đỉnh nằm trên đồ thị của \(f(x)\) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường \(y = f(x)\) và \(y = g(x)\) gần với giá trị nào nhất dưới đây?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Đại học Hồng Đức – 2022) Cho hàm số \(f(x) = {x^3} + a{x^2} + bx + c(a,b,c \in \mathbb{R})\) có hai điểm cực trị là \( - 1\) và 1. Gọi \(y = g(x)\) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của \(f(x)\), đồng thời có đỉnh nằm trên đồ thị của \(f(x)\) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai … [Đọc thêm...] về

(Đại học Hồng Đức – 2022) Cho hàm số \(f(x) = {x^3} + a{x^2} + bx + c(a,b,c \in \mathbb{R})\) có hai điểm cực trị là \( – 1\) và 1. Gọi \(y = g(x)\) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của \(f(x)\), đồng thời có đỉnh nằm trên đồ thị của \(f(x)\) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường \(y = f(x)\) và \(y = g(x)\) gần với giá trị nào nhất dưới đây?

(THPT Kim Liên – Hà Nội – 2022) Gọi \(S\) là diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x – 1\) và các đường thẳng \(y = m\), \(x = 0\), \(x = 1\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { – 4040; – 3} \right]\) để \(S \le 2021\)?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Kim Liên - Hà Nội - 2022) Gọi \(S\) là diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x - 1\) và các đường thẳng \(y = m\), \(x = 0\), \(x = 1\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 4040; - 3} \right]\) để \(S \le 2021\)? A. \(2019\). B. \(2020\). C. \(2021\). D. \(2018\). Lời giải: Chọn D Ta có: \(y = … [Đọc thêm...] về

(THPT Kim Liên – Hà Nội – 2022) Gọi \(S\) là diện tích hình phẳng giới hạn bởi parabol \(y = {x^2} + 2x – 1\) và các đường thẳng \(y = m\), \(x = 0\), \(x = 1\). Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { – 4040; – 3} \right]\) để \(S \le 2021\)?

(THPT Hương Sơn – Hà Tĩnh – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( 1 \right) = 2\); \(f’\left( x \right) = \frac{{{x^2}}}{{{{\left[ {f\left( x \right)} \right]}^2}}}\) với mọi \(x \in \left( {0; + \infty } \right)\). Giá trị \(f\left( 3 \right)\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Hương Sơn - Hà Tĩnh - 2022) Cho hàm số \(y = f\left( x \right)\) liên tục, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( 1 \right) = 2\); \(f'\left( x \right) = \frac{{{x^2}}}{{{{\left[ {f\left( x \right)} \right]}^2}}}\) với mọi \(x \in \left( {0; + \infty } \right)\). Giá trị \(f\left( 3 \right)\) bằng A. … [Đọc thêm...] về

(THPT Hương Sơn – Hà Tĩnh – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( 1 \right) = 2\); \(f’\left( x \right) = \frac{{{x^2}}}{{{{\left[ {f\left( x \right)} \right]}^2}}}\) với mọi \(x \in \left( {0; + \infty } \right)\). Giá trị \(f\left( 3 \right)\) bằng

(THPT Kim Liên – Hà Nội – 2022) Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( x \right) > 0,\forall x > \frac{1}{2}\) và có đạo hàm \(f’\left( x \right)\) liên tục trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\) thỏa mãn \(f’\left( x \right) + 8x{f^2}\left( x \right) = 0,\forall x > \frac{1}{2}\) và \(f\left( 1 \right) = \frac{1}{3}\). Tính \(f\left( 1 \right) + f\left( 2 \right) + \;…\; + f\left( {1011} \right)\).

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Kim Liên - Hà Nội - 2022) Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( x \right) > 0,\forall x > \frac{1}{2}\) và có đạo hàm \(f'\left( x \right)\) liên tục trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\) thỏa mãn \(f'\left( x \right) + 8x{f^2}\left( x \right) = 0,\forall x > \frac{1}{2}\) và \(f\left( 1 \right) = \frac{1}{3}\). … [Đọc thêm...] về

(THPT Kim Liên – Hà Nội – 2022) Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( x \right) > 0,\forall x > \frac{1}{2}\) và có đạo hàm \(f’\left( x \right)\) liên tục trên khoảng \(\left( {\frac{1}{2}; + \infty } \right)\) thỏa mãn \(f’\left( x \right) + 8x{f^2}\left( x \right) = 0,\forall x > \frac{1}{2}\) và \(f\left( 1 \right) = \frac{1}{3}\). Tính \(f\left( 1 \right) + f\left( 2 \right) + \;…\; + f\left( {1011} \right)\).

(THPT Kinh Môn – Hải Dương – 2022) Cho \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\,\left( {a \ne 0} \right)\) là hàm số nhận giá trị không âm trên đoạn \(\left[ {2;\,3} \right]\) có đồ thị \(y = f’\left( x \right)\) như hình vẽ

Biết diện tích hình giới hạn bởi các đồ thị của các hàm \(g\left( x \right) = x{f^2}\left( x \right)\,;\,\,\,h\left( x \right) = – {x^2}f\left( x \right)f’\left( x \right)\) và các đường \(x = 2;x = 3\) bằng 72. Tính \(f\left( 1 \right)\) ?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Kinh Môn - Hải Dương - 2022) Cho \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\,\left( {a \ne 0} \right)\) là hàm số nhận giá trị không âm trên đoạn \(\left[ {2;\,3} \right]\) có đồ thị \(y = f'\left( x \right)\) như hình vẽ Biết diện tích hình giới hạn bởi các đồ thị của các hàm \(g\left( x \right) = x{f^2}\left( x \right)\,;\,\,\,h\left( x \right) = … [Đọc thêm...] về

(THPT Kinh Môn – Hải Dương – 2022) Cho \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\,\left( {a \ne 0} \right)\) là hàm số nhận giá trị không âm trên đoạn \(\left[ {2;\,3} \right]\) có đồ thị \(y = f’\left( x \right)\) như hình vẽ

Biết diện tích hình giới hạn bởi các đồ thị của các hàm \(g\left( x \right) = x{f^2}\left( x \right)\,;\,\,\,h\left( x \right) = – {x^2}f\left( x \right)f’\left( x \right)\) và các đường \(x = 2;x = 3\) bằng 72. Tính \(f\left( 1 \right)\) ?

(THPT Phù Cừ – Hưng Yên – 2022) Cho hai hàm số \(f(x)\) và \(g(x)\) liên tục trên \(\mathbb{R}\) và hàm số \(f\prime (x) = a{x^3} + b{x^2} + cx + d\), \(g\prime (x) = q{x^2} + nx + p\) với \(a,q \ne 0\) có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f\prime (x)\) và \(y = g\prime (x)\) bằng \(\frac{5}{2}\) và \(f(2) = g(2)\). Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f(x)\) và \(y = g(x)\) bằng \(\frac{a}{b}\) (với \(a,b \in \mathbb{N}\) và \(a,b\) nguyên tố cùng nhau). Tính \(T = {a^2} – {b^2}\).

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Phù Cừ - Hưng Yên - 2022) Cho hai hàm số \(f(x)\) và \(g(x)\) liên tục trên \(\mathbb{R}\) và hàm số \(f\prime (x) = a{x^3} + b{x^2} + cx + d\), \(g\prime (x) = q{x^2} + nx + p\) với \(a,q \ne 0\) có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f\prime (x)\) và \(y = g\prime (x)\) bằng \(\frac{5}{2}\) và \(f(2) = g(2)\). … [Đọc thêm...] về

(THPT Phù Cừ – Hưng Yên – 2022) Cho hai hàm số \(f(x)\) và \(g(x)\) liên tục trên \(\mathbb{R}\) và hàm số \(f\prime (x) = a{x^3} + b{x^2} + cx + d\), \(g\prime (x) = q{x^2} + nx + p\) với \(a,q \ne 0\) có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f\prime (x)\) và \(y = g\prime (x)\) bằng \(\frac{5}{2}\) và \(f(2) = g(2)\). Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = f(x)\) và \(y = g(x)\) bằng \(\frac{a}{b}\) (với \(a,b \in \mathbb{N}\) và \(a,b\) nguyên tố cùng nhau). Tính \(T = {a^2} – {b^2}\).

(THPT Võ Nguyên Giáp – Quảng Bình – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị không âm trên \(\left[ { – 1;2} \right]\) và thoả mãn \(f\left( x \right) = f\left( {1 – x} \right),\;\forall x \in \left[ { – 1;2} \right]\). Đặt \({S_1} = \int\limits_{ – 1}^2 {xf\left( x \right){\rm{d}}x} \), \({S_2}\)là diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục \(Ox\) và hai đường thẳng \(x = – 1;\;x = 2\). Khẳng định nào dưới đây là đúng?

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (THPT Võ Nguyên Giáp - Quảng Bình - 2022) Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị không âm trên \(\left[ { - 1;2} \right]\) và thoả mãn \(f\left( x \right) = f\left( {1 - x} \right),\;\forall x \in \left[ { - 1;2} \right]\). Đặt \({S_1} = \int\limits_{ - 1}^2 {xf\left( x \right){\rm{d}}x} \), \({S_2}\)là diện tích hình phẳng được giới hạn bởi … [Đọc thêm...] về

(THPT Võ Nguyên Giáp – Quảng Bình – 2022) Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị không âm trên \(\left[ { – 1;2} \right]\) và thoả mãn \(f\left( x \right) = f\left( {1 – x} \right),\;\forall x \in \left[ { – 1;2} \right]\). Đặt \({S_1} = \int\limits_{ – 1}^2 {xf\left( x \right){\rm{d}}x} \), \({S_2}\)là diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục \(Ox\) và hai đường thẳng \(x = – 1;\;x = 2\). Khẳng định nào dưới đây là đúng?

(Sở Phú Thọ 2022) Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2}\ln \left( {x + 1} \right) & {\rm{khi}}\,\,x \ge 0\\2x\sqrt {{x^2} + 3} + 1 & {\rm{khi}}\,\,x < 0\end{array} \right.\). Biết \(\int\limits_{\frac{1}{e}}^e {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} = a\sqrt 3 + b\ln 2 + c\) với \(a,b,c \in \mathbb{Q}\). Giá trị của \(a + b + 6c\) bằng

Ngày 13/06/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:tich phan nang cao, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2022

Câu hỏi: (Sở Phú Thọ 2022) Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2}\ln \left( {x + 1} \right) & {\rm{khi}}\,\,x \ge 0\\2x\sqrt {{x^2} + 3} + 1 & {\rm{khi}}\,\,x < 0\end{array} \right.\). Biết \(\int\limits_{\frac{1}{e}}^e {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} = a\sqrt 3 + b\ln 2 + c\) với \(a,b,c \in \mathbb{Q}\). Giá trị của \(a … [Đọc thêm...] về

(Sở Phú Thọ 2022) Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3{x^2}\ln \left( {x + 1} \right) & {\rm{khi}}\,\,x \ge 0\\2x\sqrt {{x^2} + 3} + 1 & {\rm{khi}}\,\,x < 0\end{array} \right.\). Biết \(\int\limits_{\frac{1}{e}}^e {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} = a\sqrt 3 + b\ln 2 + c\) với \(a,b,c \in \mathbb{Q}\). Giá trị của \(a + b + 6c\) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 14
  • Trang 15
  • Trang 16
  • Trang 17
  • Trang 18
  • Interim pages omitted …
  • Trang 35
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.