• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Ứng dụng Tích phân

Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa là \(200.000\) đồng, biết \(MN = 4\,\,{\rm{m}},\,\,MQ = 6\,\,{\rm{m}}{\rm{.}}\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan, VDC Toan 2023

Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa … [Đọc thêm...] vềMột chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là \(AB = 8\,\,{\rm{m}}{\rm{.}}\) Người ra treo một tâm phông hình chữ nhật có hai đỉnh \(M,\,\,N\)nằm trên Parabol và hai đỉnh \(P,\,\,Q\) nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho \(1\,\,{{\rm{m}}^2}\) cần số tiền mua hoa là \(200.000\) đồng, biết \(MN = 4\,\,{\rm{m}},\,\,MQ = 6\,\,{\rm{m}}{\rm{.}}\) Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?

Cho phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 2\sqrt 2 \), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) (\(1 \le x \le 2\sqrt 2 \)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(x\) và \(\sqrt {{x^2} + 1} \). Thể tích của phần vật thể đã cho bằng

Ngày 20/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Cho phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 2\sqrt 2 \), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) (\(1 \le x \le 2\sqrt 2 \)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(x\) và \(\sqrt {{x^2} + 1} \). Thể tích của phần vật thể đã cho bằng A. \(\left( {9 - \frac{{2\sqrt 2 }}{3}} … [Đọc thêm...] vềCho phần vật thể giới hạn bởi hai mặt phẳng \(x = 1\) và \(x = 2\sqrt 2 \), biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) (\(1 \le x \le 2\sqrt 2 \)) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là \(x\) và \(\sqrt {{x^2} + 1} \). Thể tích của phần vật thể đã cho bằng

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \(f\left( 0 \right) = 1\), \(f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\) và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f’\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = {\left[ {f(x)} \right]^2}\) và đường thẳng \(x = 4\) bằng

Ngày 18/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \[f\left( 0 \right) = 1\], \[f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\] và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f'\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \(f\left( 0 \right) = 1\), \(f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\) và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f’\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = {\left[ {f(x)} \right]^2}\) và đường thẳng \(x = 4\) bằng

Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f(x) + xf'(x) = 4{x^3} + 4x + 2,\forall x \in \mathbb{R}\) . Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) và \(y = {f^\prime }(x)\) bằng

Ngày 15/03/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, VDC Toan 2023

Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f(x) + xf'(x) = 4{x^3} + 4x + 2,\forall x \in \mathbb{R}\) . Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) và \(y = {f^\prime }(x)\) bằng A. \(\frac{5}{2}\) .  B. \(\frac{4}{3}\) .  C. \(\frac{1}{2}\) .  D. \(\frac{1}{4}\) . … [Đọc thêm...] vềCho hàm số \(y = f(x)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f(x) + xf'(x) = 4{x^3} + 4x + 2,\forall x \in \mathbb{R}\) . Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) và \(y = {f^\prime }(x)\) bằng

Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2022, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau Diện tích hình phẳng giới hạn bởi các đường \(y = f'\left( x \right)\) và \(y = g'\left( x \right)\) thuộc khoảng nào dưới đây? A. \(\left( {7;8} \right)\). B. \(\left( {6;7} \right)\). C. \(\left( {8;9} \right)\). D. … [Đọc thêm...] về

Đề toán 2022 Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

Chart
Description automatically generated

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2022, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau: Diện tích hình phẳng giới hạn bởi các đường \(y = f'\left( x \right)\) và \(y = g'\left( x \right)\) thuộc khoảng nào dưới đây? A. \(\left( {33;35} \right)\). B. \(\left( {37;40} \right)\). C. \(\left( {29;32} … [Đọc thêm...] về

Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

Chart
Description automatically generated

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln \left( {f\left( x \right)} \right)\) có bảng biến thiên như sau

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2022, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln \left( {f\left( x \right)} \right)\) có bảng biến thiên như sau Diện tích hình phẳng giới hạn bởi các đường \(y = f'\left( x \right)\) và \(y = g'\left( x \right)\) thuộc khoảng nào dưới đây? A.\(\left( {5;6} \right)\). B.\(\left( {4;5} \right)\). C.\(\left( … [Đọc thêm...] về

Đề toán 2022 [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln \left( {f\left( x \right)} \right)\) có bảng biến thiên như sau

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Đề toán 2022 [2D3-3.1-4] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2022, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Đề toán 2022 [2D3-3.1-4] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau: Diện tích hình phẳng giới hạn bởi các đường \(y = f'\left( x \right)\) và \(y = g'\left( x \right)\) thuộc khoảng nào dưới đây? A. \(\left( {38\,;\,39} \right)\). B. \(\left( {25\,;\,26} \right)\). C. \(\left( … [Đọc thêm...] về

Đề toán 2022 [2D3-3.1-4] Cho hàm số bậc bốn \(y = f\left( x \right)\). Biết rằng hàm số \(g\left( x \right) = \ln f\left( x \right)\) có bảng biến thiên như sau:

Diện tích hình phẳng giới hạn bởi các đường \(y = f’\left( x \right)\) và \(y = g’\left( x \right)\) thuộc khoảng nào dưới đây?

Đề toán 2022 Biết \(F\left( x \right)\) và \(G(x)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và\(\int\limits_0^4 {f\left( x \right)dx = F\left( 4 \right) – G\left( 0 \right) + a} ,\left( {a > 0} \right)\). Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đường\(y = F\left( x \right);\,y = G\left( x \right);x = 0\) và \(x = 4.\)Khi \(S = 8\) thì \(a\) bằng\(\)

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Đề toán 2022 Biết \(F\left( x \right)\) và \(G(x)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và\(\int\limits_0^4 {f\left( x \right)dx = F\left( 4 \right) - G\left( 0 \right) + a} ,\left( {a > 0} \right)\). Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đường\(y = F\left( x \right);\,y = G\left( x \right);x = 0\) và \(x = 4.\)Khi \(S = 8\) thì … [Đọc thêm...] về

Đề toán 2022 Biết \(F\left( x \right)\) và \(G(x)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\) và\(\int\limits_0^4 {f\left( x \right)dx = F\left( 4 \right) – G\left( 0 \right) + a} ,\left( {a > 0} \right)\). Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đường\(y = F\left( x \right);\,y = G\left( x \right);x = 0\) và \(x = 4.\)Khi \(S = 8\) thì \(a\) bằng\(\)

Đề toán 2022 [2D3-3.1-3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\)và \(\int\limits_0^5 {f\left( x \right)dx}  = F\left( 5 \right) – G\left( 0 \right) + a\) \(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình bẳng giới hạn bởi các đường \(y = F\left( x \right),y = G\left( x \right),x = 0\) và \(x = 5\). Khi \(S = 20\) thì \(a\) bằng

Ngày 01/08/2022 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2022, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Đề toán 2022 [2D3-3.1-3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\)và \(\int\limits_0^5 {f\left( x \right)dx}  = F\left( 5 \right) - G\left( 0 \right) + a\) \(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình bẳng giới hạn bởi các đường \(y = F\left( x \right),y = G\left( x \right),x = … [Đọc thêm...] về

Đề toán 2022 [2D3-3.1-3] Biết \(F\left( x \right)\) và \(G\left( x \right)\) là hai nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\)và \(\int\limits_0^5 {f\left( x \right)dx}  = F\left( 5 \right) – G\left( 0 \right) + a\) \(\left( {a > 0} \right)\). Gọi \(S\) là diện tích hình bẳng giới hạn bởi các đường \(y = F\left( x \right),y = G\left( x \right),x = 0\) và \(x = 5\). Khi \(S = 20\) thì \(a\) bằng

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 8
  • Trang 9
  • Trang 10
  • Trang 11
  • Trang 12
  • Interim pages omitted …
  • Trang 35
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.