• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Ứng dụng Tích phân / Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \(f\left( 0 \right) = 1\), \(f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\) và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f’\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = {\left[ {f(x)} \right]^2}\) và đường thẳng \(x = 4\) bằng

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \(f\left( 0 \right) = 1\), \(f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\) và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f’\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = {\left[ {f(x)} \right]^2}\) và đường thẳng \(x = 4\) bằng

Ngày 18/05/2023 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Ung dung tich phan

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \[f\left( 0 \right) = 1\], \[f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\] và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f’\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = {\left[ {f(x)} \right]^2}\) và đường thẳng \(x = 4\) bằng

A. \(\frac{{40}}{3}\).

B. \(\frac{{20}}{3}\).

C. \(\frac{{11}}{2}\).

D. \(\frac{{87}}{{35}}\).

Lời giải

Cho hàm số (fleft( x right)) có đạo hàm trên (left[ {0; + infty } right)) thỏa mãn (fleft( 0 right) = 1), (fleft( x right) > 0,forall x in left[ {0; + infty } right)) và(frac{1}{{fleft( x right)}} + frac{1}{{2f'left( x right) + 1}} = 1,forall x in left[ {0; + infty } right)). Diện tích hình phẳng giới hạn bởi các đường (y = f(x)) , (y = {left[ {f(x)} right]^2}) và đường thẳng (x = 4) bằng 1

Bài liên quan:

  1.   Một khối cầu có bán kính là \(5\left( {dm} \right)\), người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng \(3\left( {dm} \right)\) để làm một chiếc lu đựng nước (như hình vẽ). Tính thể tích mà chiếc lu chứa được.
    A drawing of a sphereDescription automatically generated
  2. Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x,\)\(\forall x \in \mathbb{R}.\)Tính \(\int\limits_0^2 {f\left( x \right)} dx.\)
  3.   Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(2f\left( x \right) – f’\left( x \right) = 3x\left( {2x – 5} \right)\), \(\forall x \in \mathbb{R}\). Biết rằng \(f\left( 0 \right) =  – 1\). Giá trị của \(f\left( 2 \right)\) bằng
  4.   Cho hàm số \(f(x)\) liên tục với mọi \(x \ne 0\) thỏa mãn:\(f(x) + 2f\left( {\frac{1}{x}} \right) = 3x\) với \(x \ne 0\). Tính thể tích vật thể tròn xoay khi quay quanh \(Ox\) bởi hình phẳng giới hạn bởi đồ thị hàm số \(y = f(x)\), trục \(Ox\), và hai đường thẳng \(x = 1;\,x = 2\).
  5.   Cho hình vuông \(ABCD\) tâm\(O\), độ dài cạnh là \(4\) cm. Đường cong \(BOC\) là một phần của parabol đỉnh \(O\) chia hình vuông thành hai hình phẳng có diện tích lần lượt là \({S_1}\) và \({S_2}\) (tham khảo hình vẽ).
    Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng
  6. Nhà trường dự định làm một vườn hoa dạng hình elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là \(8{\rm{ m}}\) và \({\rm{4 m}}\); \({F_1}\), \({F_2}\) lần lượt là hai tiêu điểm của elip. Phần \(A\), \(B\) dùng để trồng hoa, phần \(C\), \(D\) dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là \(270.000\) đ và \(140.{\rm{000}}\) đ. Tính tổng số tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn).
  7.   Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) nằm phía trên trục hoành. Hàm số \(y = f\left( x \right)\) thỏa mãn các điều kiện \({\left[ {f’\left( x \right)} \right]^2} + f”\left( x \right).f\left( x \right) + 4 = 0,\,\,f\left( 0 \right) = 0,\,\,f\left( {\frac{1}{2}} \right) = \sqrt 3 .\) Tính \(f\left( 1 \right)\).
  8. Một cái cổng hình Parabol như hình vẽ sau. Chiều cao \(GH = 4m\), chiều rộng \(AB = 4m\), \(AC = BD = 0,9m\). Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1200000\) đồng\(/{m^2}\), còn các phần để trắng làm xiên hoa có giá là \(900000\) đồng\(/{m^2}\). Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?
  9. Cho hàm số \(f\left( x \right)\) có đạo hàm cấp hai liên tục trên \(\mathbb{R}\) và thoả mãn \(f\left( 0 \right) = f’\left( 0 \right) = 0,\,f”\left( x \right) – \left( {2x + 1} \right){e^x} = f\left( x \right)\) với mọi \(x \in \mathbb{R}\). Giá trị của \(f\left( 2 \right)\) bằng
  10.   Cho hàm số \(f(x)\) thỏa mãn:\(3f( – x) – 2f(x) = {\tan ^2}x\). Tính thể tích vật thể tròn xoay khi quay quanh \(Ox\) bởi hình phẳng giới hạn bởi đồ thị hàm số \(y = f(x)\), trục \(Ox\), trục tung và đường thẳng \(x = \frac{\pi }{4}\).
  11. Cho hàm số \(f\left( x \right)\) liên tục không âm trên \(\left[ {0\,;\frac{\pi }{2}} \right]\), thỏa mãn \(f\left( x \right).f’\left( x \right) = \cos x.\sqrt {1 + {f^2}\left( x \right)} \) với mọi \(x \in \left[ {0\,;\frac{\pi }{2}} \right]\) và \(f\left( 0 \right) = 2\sqrt 2 \). Giá trị của \(f\left( {\frac{\pi }{2}} \right)\) bằng
  12.   Cho hình \(H\) giới hạn bởi các đường \({y^2} = 2x\) và \({x^2} + {y^2} = 8\)( phần gạch sọc trong hình). Khối tròn xoay khi quay \(H\) xung quanh trục \(Ox\) có thể tích bằng bao nhiêu?
    A diagram of a circle with a circle and a circle with a circle and a circle with a circle and a circle with a circle and a circle with a circle and a circle with a circle and
Description automatically generated
  13. Cho \(f\left( x \right)\) là hàm liên tục trên \(\mathbb{R}\). Với số thực \(a > 0\), giả sử rằng mọi \(x \in \left[ {0;a} \right]\) ta có \(f\left( x \right) > 0\) và \(f\left( x \right)f\left( {a – x} \right) = 1\). Tính \(I = \int\limits_0^a {\frac{1}{{1 + f\left( x \right)}}{\rm{d}}x} \).
  14. Cho hàm số \(f(x) = a{x^4} – {x^3} + 2x + 2\) và hàm số \(g(x) = b{x^3} + c{x^2} + 2\), có đồ thị như hình vẽ bên. Gọi \({S_1};{S_2}\) là diện tích các hình phẳng gạch chéo trong hình vẽ, biết \({S_2} = \frac{{791}}{{640}}\). Khi đó \({S_1}\) bằng
    A picture containing black, darkness
Description automatically generated
  15. Cho hàm số \(f\left( x \right)\) liên tục và luôn nhận giá trị dương trên khoảng \(\left( {2;4} \right)\), thỏa mãn \(f\left( 3 \right) = \frac{1}{{{e^2}}}\) và \({f^3}\left( x \right) + {e^{ – 2x}} = 3{e^{ – x}}\sqrt {f\left( x \right)} .f’\left( x \right),\;\;\forall x \in \left( {2;4} \right)\). Khi đó \(f\left( {\frac{5}{2}} \right)\) thuộc khoảng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.