Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) có đồ thị \((C)\). Biết \(y = ax + b\) là phương trình tiếp tuyến của \((C)\) có hệ số góc nhỏ nhất trong các tiếp tuyến có hoành độ tiếp điểm là số nguyên dương. Tính \(S = 5a + 4b\). A. \( - 29\). B. \(9\). C. \( - 9\). D. \(29\). Lời giải: Ta có \(y' = f'\left( x \right) = \frac{{ … [Đọc thêm...] về Cho hàm số \(y = \frac{{2x + 1}}{{x – 1}}\) có đồ thị \((C)\). Biết \(y = ax + b\) là phương trình tiếp tuyến của \((C)\) có hệ số góc nhỏ nhất trong các tiếp tuyến có hoành độ tiếp điểm là số nguyên dương. Tính \(S = 5a + 4b\).
Trắc nghiệm Tính đơn điệu của hàm số
Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { – 10;10} \right)\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{{\left( {m + 1} \right)x + 18}}{{3x + 2m – 1}}\) nghịch biến trên khoảng \(\left( {3;\,\,7} \right)\)?
Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 10;10} \right)\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{{\left( {m + 1} \right)x + 18}}{{3x + 2m - 1}}\) nghịch biến trên khoảng \(\left( {3;\,\,7} \right)\)? A. \(8\). B. \(10\). C. \(11\). D. \(9\). Lời giải: Điều kiện: \(3x + 2m - 1 \ne 0 \Leftrightarrow x … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(m \in \left( { – 10;10} \right)\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{{\left( {m + 1} \right)x + 18}}{{3x + 2m – 1}}\) nghịch biến trên khoảng \(\left( {3;\,\,7} \right)\)?
Cho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { – 2x + 3} – 1}}{{ – \sqrt { – 2x + 3} + \frac{2}{m}}}\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để hàm số đã cho nghịch biến trên khoảng \(\left( { – \frac{1}{2};\,\,1} \right)\) là \(\left( { – \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\). Giá trị của biểu thức \(a – b + c – d\) bằng.
Cho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { - 2x + 3} - 1}}{{ - \sqrt { - 2x + 3} + \frac{2}{m}}}\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để hàm số đã cho nghịch biến trên khoảng \(\left( { - \frac{1}{2};\,\,1} \right)\) là \(\left( { - \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\). … [Đọc thêm...] vềCho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { – 2x + 3} – 1}}{{ – \sqrt { – 2x + 3} + \frac{2}{m}}}\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để hàm số đã cho nghịch biến trên khoảng \(\left( { – \frac{1}{2};\,\,1} \right)\) là \(\left( { – \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\). Giá trị của biểu thức \(a – b + c – d\) bằng.
Tìm tập các giá trị của \(m\) để hàm số \(y = \frac{{\ln x – m}}{{m\ln x – 4}}\) đồng biến trên khoảng \(\left( {{\rm{e}}; + \infty } \right)\).
Tìm tập các giá trị của \(m\) để hàm số \(y = \frac{{\ln x - m}}{{m\ln x - 4}}\) đồng biến trên khoảng \(\left( {{\rm{e}}; + \infty } \right)\). A. \(\left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\). B. \(\left( { - \infty ; - 2} \right) \cup \left[ {4; + \infty } \right)\). C. \(\left( { - \infty ; - 2} \right)\). D. … [Đọc thêm...] vềTìm tập các giá trị của \(m\) để hàm số \(y = \frac{{\ln x – m}}{{m\ln x – 4}}\) đồng biến trên khoảng \(\left( {{\rm{e}}; + \infty } \right)\).
Cho hàm số \(y = \frac{{\ln x – 6}}{{\ln x – 3m}}\) với \(m\) là tham số. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của \(S\).
Cho hàm số \(y = \frac{{\ln x - 6}}{{\ln x - 3m}}\) với \(m\) là tham số. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của \(S\). A. \(2\). B.\(4\). C. \(3\). D. \(1\). Lời giải: Điều kiện \(\ln x - 3m \ne 0\)\( \Leftrightarrow m \ne … [Đọc thêm...] về Cho hàm số \(y = \frac{{\ln x – 6}}{{\ln x – 3m}}\) với \(m\) là tham số. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của \(S\).
Cho hàm số \(y = \frac{{{x^2} + x + m}}{{x – 1}}\), (\(m\) là tham số). Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có hai cực trị \(a,\,b\) thỏa mãn \({a^2} + {b^2} = 10\).
Cho hàm số \(y = \frac{{{x^2} + x + m}}{{x - 1}}\), (\(m\) là tham số). Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có hai cực trị \(a,\,b\) thỏa mãn \({a^2} + {b^2} = 10\). A. \(m = - 3\). B. \(m = 2\). C. \(m = \frac{7}{2}\). D. \(m = 1\) Lời giải: Ta có \(y' = \frac{{{x^2} - 2x - m - 1}}{{{{\left( … [Đọc thêm...] về Cho hàm số \(y = \frac{{{x^2} + x + m}}{{x – 1}}\), (\(m\) là tham số). Tìm tất cả các giá trị thực của tham số \(m\) để hàm số có hai cực trị \(a,\,b\) thỏa mãn \({a^2} + {b^2} = 10\).
Cho hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Biết rằng điểm \(M\) thuộc nhánh bên phải tiệm cận đứng của \(\left( C \right)\). Tìm \({x_0}\) để điểm \(M\) ở gần điểm \(I\left( { – 1; – 1} \right)\) nhất.
Cho hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Biết rằng điểm \(M\) thuộc nhánh bên phải tiệm cận đứng của \(\left( C \right)\). Tìm \({x_0}\) để điểm \(M\) ở gần điểm \(I\left( { - 1; - 1} \right)\) nhất. A. \({x_0} = 1 - \frac{1}{{\sqrt[4]{2}}}\). B. … [Đọc thêm...] về Cho hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\). Biết rằng điểm \(M\) thuộc nhánh bên phải tiệm cận đứng của \(\left( C \right)\). Tìm \({x_0}\) để điểm \(M\) ở gần điểm \(I\left( { – 1; – 1} \right)\) nhất.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { – 2024;2024} \right]\) sao cho ứng với mỗi m, hàm số \(y = \frac{{ – {x^2} + 4x + m + 1}}{{4x + m}}\) có đúng một điểm cực trị thuộc khoảng \(\left( {2;4} \right)\)?
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2024;2024} \right]\) sao cho ứng với mỗi m, hàm số \(y = \frac{{ - {x^2} + 4x + m + 1}}{{4x + m}}\) có đúng một điểm cực trị thuộc khoảng \(\left( {2;4} \right)\)? A. \(2024\). B. \(2023\). C. \(3\). D. \(4\). Lời giải: TXĐ: \(D = \mathbb{R}\backslash \left\{ … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { – 2024;2024} \right]\) sao cho ứng với mỗi m, hàm số \(y = \frac{{ – {x^2} + 4x + m + 1}}{{4x + m}}\) có đúng một điểm cực trị thuộc khoảng \(\left( {2;4} \right)\)?
Tất cả các giá trị của \(m\) để hàm số \(y = \frac{{2\cos x – 1}}{{\cos x – m}}\) đồng biến trên khoảng \(\left( {0\,;\,\frac{\pi }{2}} \right)\) là:
Tất cả các giá trị của \(m\) để hàm số \(y = \frac{{2\cos x - 1}}{{\cos x - m}}\) đồng biến trên khoảng \(\left( {0\,;\,\frac{\pi }{2}} \right)\) là: A. \(m > 1\). B. \(m > \frac{1}{2}\). C. \(m \ge \frac{1}{2}\). D. \(m \ge 1\). Lời giải: Chọn D Đặt \(\cos x = t\). Ta có \(x \in \left( {0;\,\frac{\pi }{2}} \right)\)\( … [Đọc thêm...] vềTất cả các giá trị của \(m\) để hàm số \(y = \frac{{2\cos x – 1}}{{\cos x – m}}\) đồng biến trên khoảng \(\left( {0\,;\,\frac{\pi }{2}} \right)\) là:
Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ { – 2024;\,2024} \right]\) để hàm số \(y = \frac{{{{\cot }^2}x – 2m\cot x + 2{m^2} – 1}}{{\cot x – m}}\) nghịch biến trên \(\left( {\frac{\pi }{4};\,\frac{\pi }{2}} \right)\) ?
Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ { - 2024;\,2024} \right]\) để hàm số \(y = \frac{{{{\cot }^2}x - 2m\cot x + 2{m^2} - 1}}{{\cot x - m}}\) nghịch biến trên \(\left( {\frac{\pi }{4};\,\frac{\pi }{2}} \right)\) ? A. 2024. B. 2025. C. 2026. D. 2023. Lời giải: Đặt \(t = \cot x\). Ta có \(x \in \left( … [Đọc thêm...] về Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ { – 2024;\,2024} \right]\) để hàm số \(y = \frac{{{{\cot }^2}x – 2m\cot x + 2{m^2} – 1}}{{\cot x – m}}\) nghịch biến trên \(\left( {\frac{\pi }{4};\,\frac{\pi }{2}} \right)\) ?