• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Tính đơn điệu của hàm số / Tổng các giá trị nguyên của tham số  sao cho hàm số \(y =  – \frac{1}{3}{x^3} – m{x^2} + mx – 2022\) đồng biến trên một đoạn có độ dài là nhỏ hơn 8 là

Tổng các giá trị nguyên của tham số  sao cho hàm số \(y =  – \frac{1}{3}{x^3} – m{x^2} + mx – 2022\) đồng biến trên một đoạn có độ dài là nhỏ hơn 8 là

Ngày 02/10/2022 Thuộc chủ đề:Trắc nghiệm Tính đơn điệu của hàm số Tag với:Don dieu VDC

Tổng các giá trị nguyên của tham số sao cho hàm số \(y = – \frac{1}{3}{x^3} – m{x^2} + mx – 2022\) đồng biến trên một đoạn có độ dài là nhỏ hơn 8 là
A. 0.
B. 2 .
C. 3
D. 1.
Lời giải

Ta có

\(y = – \frac{1}{3}{x^3} – m{x^2} + mx – 2022\) suy ra \(y’ = – {x^2} – 2mx + m\)

\(\left\{ \begin{array}{l}a = – 1 < 0\\\Delta ‘ = {m^2} + m\end{array} \right.\)
Hàm số đồng biến trên một đoạn có độ dài là nhỏ hơn 8

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}\Delta ‘ > 0\\\left| {{x_1} – {x_2}} \right| < 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + m > 0\\{\left( {{x_1} + {x_2}} \right)^2} – 4{x_1}{x_2} < 64\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \in \left( { – \infty ; – 1} \right) \cup \left( {0; + \infty } \right)\\4{m^2} + 4m < 8\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \in \left( { – \infty ; – 1} \right) \cup \left( {0; + \infty } \right)\\m \in \left( { – 2;1} \right)\end{array} \right. \Leftrightarrow m \in \left( { – 2; – 1} \right) \cup \left( {0;1} \right)\end{array}\)

\(m \in \mathbb{Z} \Rightarrow \)

không có giá trị nguyên nào của tham số \(m\) thoả mãn

Bài liên quan:

  1. [Mức độ 4] Cho hàm số \(y = f\left( x \right)\), có đạo hàm \(f’\left( x \right) = \left( {{x^2} – 9} \right)\left( {x – 5} \right).\) Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \(g\left( x \right) = f\left( {{e^{{x^3} + 3{x^2}}} – m} \right)\) có đúng \(7\) điểm cực trị

  2. [Mức độ 4] Cho hàm số đa thức \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Biết rằng \(f\left( 0 \right) = 0\), \(f\left( { – 3} \right) = f\left( {\frac{3}{2}} \right) = – \frac{{19}}{4}\) và đồ thị hàm số \(y = f’\left( x \right)\) có dạng như hình vẽ.

    Hàm số \(g\left( x \right) = \left| {4f\left( x \right) + 2{x^2}} \right|\) giá trị lớn nhất của \(g\left( x \right)\) trên \(\left[ { – 2;\frac{3}{2}} \right]\) là

  3. [ Mức độ 4 ] Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} – 2x} \right)\) với \(\forall x \in \mathbb{R}\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(f\left( {{x^2} – 4x + m} \right)\) có \(5\) điểm cực trị?

  4. [Mức độ 3] Cho hàm số \(y\, = \,f(x)\,\) có đạo hàm và liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( { – 6} \right) = 42\) và bảng xét dấu đạo hàm như

    Giá trị nhỏ nhất của hàm số \(y\, = \,f\left( { – \,3{x^4}\,\, + \,\,12{x^2}\, – \,15} \right)\, + \,2{x^6}\, + \,6{x^4}\, – 48{x^2}\) trên đoạn \(\left[ { – 1;1} \right]\) bằng

  5. [Mức độ 4] Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right) = {x^2} + x – 6\) với mọi \(x \in \mathbb{R}\). Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(g\left( x \right) = f\left( {{x^3} – 3{x^2} – 9x + m} \right)\) có đúng ba điểm cực trị thuộc khoảng \(\left( {0;4} \right)\). Tính tổng các phần tử của \(S\).

  6. [Mức độ 3] Cho hàm số \(f(x) = {x^5} + 3{x^3} – 4\;m\). Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt[3]{{f(x) + m}}} \right) = {x^3} – m\) có nghiệm thuộc \(\left[ {1;2} \right]\)?

  7. [Mức độ 4] Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f’\left( x \right) = {x^2} – 5x – 6\,,\,\forall x \in \mathbb{R}\). Tính tổng tất cả các giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(g\left( x \right) = f\left( { – {x^3} + 3x + m} \right)\) có đúng ba điểm cực trị thuộc khoảng \(\left( {0\,;\,3} \right)\).

  8. [ Mức độ 4] Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị

    \(y = f’\left( x \right)\) như hình vẽ bên. Đặt \(g\left( x \right) = f\left( {x – m} \right) – \frac{1}{2}{\left( {x – m – 1} \right)^2} + 2022\), với \(m\) là tham số thự

    C. Gọi \(S\) là tập hợp các giá trị nguyên dương của \(m\) để hàm số \(y = g\left( x \right)\) đồng biến trên khoảng \(\left( {2;3} \right)\). Tổng tất cả các phần tử trong \(S\) bằng

  9. [Mức độ 4] Cho hàm số bậc ba \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} – 3x + 2} \right)\sqrt {2x + 1} }}{{\left( {{x^4} – 5{x^2} + 4} \right).f\left( x \right)}}\) có bao nhiêu đường tiệm cận đứng?

    Description: C:UsersUserAppDataLocalTempgeogebra.png
  10. [ Mức độ 3] Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ sau.

    Hỏi đồ thị hàm số \(y = \frac{{\left( {{x^2} + 4x + 3} \right)\sqrt {{x^2} + x} }}{{x\left[ {{f^2}\left( x \right) – 2f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?

  11. [ Mức độ 4] Cho hàm số \(y = \left| {4f\left( {\sin x} \right) + \cos 2x – \frac{a}{4}} \right|\) có đạo hàm trên \(y = \left| {4f\left( {\sin x} \right) + \cos 2x – \frac{a}{4}} \right|\)và \(y = \left| {4f\left( {\sin x} \right) + \cos 2x – \frac{a}{4}} \right|\). Đồ thị hàm số \(y = \left| {4f\left( {\sin x} \right) + \cos 2x – \frac{a}{4}} \right|\) như hình bên. Có bao nhiêu số nguyên dương \(y = \left| {4f\left( {\sin x} \right) + \cos 2x – \frac{a}{4}} \right|\) để hàm số \(y = \left| {4f\left( {\sin x} \right) + \cos 2x – \frac{a}{4}} \right|\) nghịch biến trên \(12\)?

  12. [Mức độ 3] Cho hàm số bậc bốn \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ

    Có bao nhiêu giá trị nguyên của \(m \in \left[ { – 2023;2024} \right]\) sao cho phương trình \(f\left( {\frac{1}{{\ln x – 2}}} \right) = m\) có đúng hai nghiệm.

  13. [ Mức độ 4] Cho hàm số \(y = {x^3} – 3{x^2} + 2\). Hỏi có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\left| {{x^4} – 8{x^2}} \right| + m} \right) – 2 = 0\) có đúng 12 nghiệm.

  14. [Mức độ 4] Xét các số thực thỏa mãn \({2^{{x^2} + {y^2} + 1}} \le \left( {{x^2} + {y^2} – 2x + 2} \right){.4^x}\). Giá trị lớn nhất của biểu thức \(P = 2{x^2} + {y^2} + 2x – 3\) bằng

  15. [ Mức độ 4] Cho hàm số bậc bốn \(y = f\left( x \right)\) có \(f\left( 5 \right) > 8\) và \(f\left( 1 \right) = 0.\) Biết hàm số

    \(y = f’\left( x \right)\) có đồ thị như hình vẽ bên.

    Hàm số \(g\left( x \right) = \left| {f\left( {1 – \frac{x}{2}} \right) – \frac{{{x^2}}}{8}} \right|\) nghịch biến trên khoảng nào dưới đây?

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.