• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Hai đường cong \(\left( {{C_1}} \right):y = {a^x}.lna,\left( {{C_2}} \right):y = {b^x}.lnb,\left( {b > a > 1} \right)\) và hai đường thẳng \(x = 1,x = 2\) tạo thành hình thang cong \(MNPQ\)có diện tích bằng \(4\). Giá trị nhỏ nhất của biểu thức \(P = 2b\) bằng

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Hai đường cong \(\left( {{C_1}} \right):y = {a^x}.lna,\left( {{C_2}} \right):y = {b^x}.lnb,\left( {b > a > 1} \right)\) và hai đường thẳng \(x = 1,x = 2\) tạo thành hình thang cong \(MNPQ\)có diện tích bằng \(4\). Giá trị nhỏ nhất của … [Đọc thêm...] vềHai đường cong \(\left( {{C_1}} \right):y = {a^x}.lna,\left( {{C_2}} \right):y = {b^x}.lnb,\left( {b > a > 1} \right)\) và hai đường thẳng \(x = 1,x = 2\) tạo thành hình thang cong \(MNPQ\)có diện tích bằng \(4\). Giá trị nhỏ nhất của biểu thức \(P = 2b\) bằng

Cho \(y = f(x)\)xác định trên \(\left[ { – 4;4} \right]\) có đồ thị như hình vẽ. Biết \({S_1};\,{S_2};\,{S_3}\)có diện tích lần lượt là \(4;1;4\). Khi đó \(\int\limits_{ – 1}^1 {\left( {1 – x} \right)f’\left( {4x} \right)} \) bằng

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho \(y = f(x)\)xác định trên \(\left[ { - 4;4} \right]\) có đồ thị như hình vẽ. Biết \({S_1};\,{S_2};\,{S_3}\)có diện tích lần lượt là \(4;1;4\). Khi đó \(\int\limits_{ - 1}^1 {\left( {1 - x} \right)f'\left( {4x} \right)} \) … [Đọc thêm...] vềCho \(y = f(x)\)xác định trên \(\left[ { – 4;4} \right]\) có đồ thị như hình vẽ. Biết \({S_1};\,{S_2};\,{S_3}\)có diện tích lần lượt là \(4;1;4\). Khi đó \(\int\limits_{ – 1}^1 {\left( {1 – x} \right)f’\left( {4x} \right)} \) bằng

Cho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong trong hình dưới. Biết hàm số \(f(x)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2k\). Gọi \({S_1}\) và \({S_2}\) là diện tích của haihình phẳng được cho trong hình dưới

Ngày 24/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong trong hình dưới. Biết hàm số \(f(x)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2k\). Gọi … [Đọc thêm...] vềCho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong trong hình dưới. Biết hàm số \(f(x)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2k\). Gọi \({S_1}\) và \({S_2}\) là diện tích của haihình phẳng được cho trong hình dưới

Cho hàm số bậc bốn\(y = f\left( x \right)\) đồ thị \(\left( C \right)\) như hình bên, biết \(\left( C \right)\) nhận trục tung làm trục đối xứng. Hàm số \(y = f\left( x \right)\) đạt cực trị tại các điểm \({x_1},{x_2},{x_3}\) thỏa mãn \({x_3} = {x_1} + 4,f\left( {{x_1}} \right) + 8f\left( {{x_2}} \right) + f\left( {{x_3}} \right) = 0\). Gọi \({S_1},{S_2},{S_3}\) là diện tích hình phẳng được đánh dấu như hình bên. Tính tỉ số \(\frac{{{S_1}}}{{{S_1} + {S_2} + {S_3}}}\).

Ngày 23/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn\(y = f\left( x \right)\) đồ thị \(\left( C \right)\) như hình bên, biết \(\left( C \right)\) nhận trục tung làm trục đối xứng. Hàm số \(y = f\left( x \right)\) đạt cực trị tại các điểm \({x_1},{x_2},{x_3}\) thỏa mãn … [Đọc thêm...] vềCho hàm số bậc bốn\(y = f\left( x \right)\) đồ thị \(\left( C \right)\) như hình bên, biết \(\left( C \right)\) nhận trục tung làm trục đối xứng. Hàm số \(y = f\left( x \right)\) đạt cực trị tại các điểm \({x_1},{x_2},{x_3}\) thỏa mãn \({x_3} = {x_1} + 4,f\left( {{x_1}} \right) + 8f\left( {{x_2}} \right) + f\left( {{x_3}} \right) = 0\). Gọi \({S_1},{S_2},{S_3}\) là diện tích hình phẳng được đánh dấu như hình bên. Tính tỉ số \(\frac{{{S_1}}}{{{S_1} + {S_2} + {S_3}}}\).

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(y = f\left( x \right)\) có 3 điểm cực trị là \({x_1},{x_2},{x_3}\) thỏa mãn \({x_3} – {x_1} = 4\) và \(f\left( {{x_2}} \right) =  – 4\), đồ thị nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Gọi \({S_1}\) và \({S_2}\) là diện tích của hai hình phẳng được gạch như trong hình vẽ. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Ngày 22/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(y = f\left( x \right)\) có 3 điểm cực trị là \({x_1},{x_2},{x_3}\) thỏa mãn \({x_3} - {x_1} = 4\) và \(f\left( {{x_2}} \right) =  - 4\), … [Đọc thêm...] vềCho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(y = f\left( x \right)\) có 3 điểm cực trị là \({x_1},{x_2},{x_3}\) thỏa mãn \({x_3} – {x_1} = 4\) và \(f\left( {{x_2}} \right) =  – 4\), đồ thị nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Gọi \({S_1}\) và \({S_2}\) là diện tích của hai hình phẳng được gạch như trong hình vẽ. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Cho hàm số bậc bốn \(y = f(x)\) có đồ thị là đường cong trong hình. Biết hàm số \(y = f(x)\) đạt cực trị tại ba điểm \({x_1};\,{x_2};\,{x_3}\) thỏa mãn \({x_1} + 3 = {x_2} = \,{x_3} – 1\). Gọi \({S_1}\)là diện tích của hình phẳng được tô đậm và \({S_2}\) là diện tích của hình phẳng được gạch chéo trong hình bên. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Ngày 22/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn \(y = f(x)\) có đồ thị là đường cong trong hình. Biết hàm số \(y = f(x)\) đạt cực trị tại ba điểm \({x_1};\,{x_2};\,{x_3}\) thỏa mãn \({x_1} + 3 = {x_2} = \,{x_3} - 1\). Gọi \({S_1}\)là diện tích của hình phẳng được tô … [Đọc thêm...] vềCho hàm số bậc bốn \(y = f(x)\) có đồ thị là đường cong trong hình. Biết hàm số \(y = f(x)\) đạt cực trị tại ba điểm \({x_1};\,{x_2};\,{x_3}\) thỏa mãn \({x_1} + 3 = {x_2} = \,{x_3} – 1\). Gọi \({S_1}\)là diện tích của hình phẳng được tô đậm và \({S_2}\) là diện tích của hình phẳng được gạch chéo trong hình bên. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng

Cho hàm số bậc bốn \(y{\rm{ }} = {\rm{ }}f\left( x \right)\) có đồ thị là đường congnhư hình bên. Biết hàm số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\) có 3 điểm cực trị lập thành cấp số cộng có công sai \(d = \frac{3}{2}\) thỏa mãn \({x_1} + {x_3} =  – 1\)và cắt trục tung tại điểm có tung độ bằng 1.Gọi S1 và S2,S3là diện tích của cáchình phẳng được gạch trong hình bên. Tính tỉ số \(\frac{{{S_1}}}{{{S_2} + {S_3}}}\)

Ngày 22/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn \(y{\rm{ }} = {\rm{ }}f\left( x \right)\) có đồ thị là đường congnhư hình bên. Biết hàm số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\) có 3 điểm cực trị lập thành cấp số cộng có công sai \(d = \frac{3}{2}\) thỏa mãn \({x_1} … [Đọc thêm...] vềCho hàm số bậc bốn \(y{\rm{ }} = {\rm{ }}f\left( x \right)\) có đồ thị là đường congnhư hình bên. Biết hàm số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\) có 3 điểm cực trị lập thành cấp số cộng có công sai \(d = \frac{3}{2}\) thỏa mãn \({x_1} + {x_3} =  – 1\)và cắt trục tung tại điểm có tung độ bằng 1.Gọi S1 và S2,S3là diện tích của cáchình phẳng được gạch trong hình bên. Tính tỉ số \(\frac{{{S_1}}}{{{S_2} + {S_3}}}\)

Cho hàm số\(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị \(\left( C \right),\) Biết\(f( – 1) = 0\). Tiếp tuyến \(d\) tại điểm có hoành độ \(x =  – 1\) của \(\left( C \right)\) cắt \(\left( C \right)\) tại 2 điểm có hoành độ lần lượt là 0 và 2, Gọi \({S_1};{S_2}\) là diện tích hình phẳng. Tính tỷ số \(\frac{{{S_1}}}{{{S_2}}}\) 

Ngày 22/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số\(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị \(\left( C \right),\) Biết\(f( - 1) = 0\). Tiếp tuyến \(d\) tại điểm có hoành độ \(x =  - 1\) của \(\left( C \right)\) cắt \(\left( C \right)\) tại 2 điểm có hoành độ lần lượt là 0 … [Đọc thêm...] vềCho hàm số\(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị \(\left( C \right),\) Biết\(f( – 1) = 0\). Tiếp tuyến \(d\) tại điểm có hoành độ \(x =  – 1\) của \(\left( C \right)\) cắt \(\left( C \right)\) tại 2 điểm có hoành độ lần lượt là 0 và 2, Gọi \({S_1};{S_2}\) là diện tích hình phẳng. Tính tỷ số \(\frac{{{S_1}}}{{{S_2}}}\) 

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f’\left( x \right)\) cắt trục \(Ox\) tại ba điểm có hoành độ \(a < b < c\) như hình vẽ. Giá trị lớn nhất của hàm số là

Ngày 22/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) cắt trục \(Ox\) tại ba điểm có hoành độ \(a < b < c\) như hình vẽ. Giá trị lớn nhất của hàm số là A. \(f(a)\).  B. \(f(b)\).  C. … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f’\left( x \right)\) cắt trục \(Ox\) tại ba điểm có hoành độ \(a < b < c\) như hình vẽ. Giá trị lớn nhất của hàm số là

Cho hàm số bậc bốn \(y = f(x)\) có đồ thị là đường cong như hình vẽ bên. Biết hàm số đạt cực trị tại các điểm\({x_1};\,{x_2};\,{x_3}\) sao cho \({x_1} + {x_2} + {x_3} = 2\sqrt 2 \) và \(f({x_1}) + f({x_2}) + f({x_3}) = 4\), đồ thị nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Gọi \({S_1};\,{S_2}\) là diện tích hai hình phẳng được gạch như hình vẽ bên. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\)

Ngày 22/05/2021 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:TN THPT 2021, Trắc nghiệm ứng dụng tích phân diện tích hình phẳng, Tuong tu cau 48 de toan minh hoa

DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH)   Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn \(y = f(x)\) có đồ thị là đường cong như hình vẽ bên. Biết hàm số đạt cực trị tại các điểm\({x_1};\,{x_2};\,{x_3}\) sao cho \({x_1} + {x_2} + {x_3} = 2\sqrt 2 \) và \(f({x_1}) + f({x_2}) + f({x_3}) = 4\), đồ thị nhận … [Đọc thêm...] vềCho hàm số bậc bốn \(y = f(x)\) có đồ thị là đường cong như hình vẽ bên. Biết hàm số đạt cực trị tại các điểm\({x_1};\,{x_2};\,{x_3}\) sao cho \({x_1} + {x_2} + {x_3} = 2\sqrt 2 \) và \(f({x_1}) + f({x_2}) + f({x_3}) = 4\), đồ thị nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Gọi \({S_1};\,{S_2}\) là diện tích hai hình phẳng được gạch như hình vẽ bên. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\)

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 11
  • Trang 12
  • Trang 13
  • Trang 14
  • Trang 15
  • Interim pages omitted …
  • Trang 21
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.