• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

TN THPT 2021

Cho điểm \(A\left( {0;8;2} \right)\) và mặt cầu \(\left( S \right)\) có phương trình \((S):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\) và điểm \(B\left( {9; – 7;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) tiếp xúc với \(\left( S \right)\) sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) là lớn nhất. Giả sử \(\vec n = \left( {1;m;n} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\). Lúc đó

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Cho điểm \(A\left( {0;8;2} \right)\) và mặt cầu \(\left( S \right)\) có phương trình \((S):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\) và điểm \(B\left( {9; - 7;23} \right)\). … [Đọc thêm...] vềCho điểm \(A\left( {0;8;2} \right)\) và mặt cầu \(\left( S \right)\) có phương trình \((S):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\) và điểm \(B\left( {9; – 7;23} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) qua \(A\) tiếp xúc với \(\left( S \right)\) sao cho khoảng cách từ \(B\) đến \(\left( P \right)\) là lớn nhất. Giả sử \(\vec n = \left( {1;m;n} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\). Lúc đó

Trong không gian \(Oxyz\), cho hai điểm \(A(1;2;4),B(0;0;1)\) và mặt cầu \((S):{(x + 1)^2} + {(y – 1)^2} + {z^2} = 4\). Mặt phẳng \((P):ax + by + cz + 3 = 0\) đi qua \(A,B\) và cắt mặt cầu \((S)\)theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tính \(T = a + b + c\).

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(Oxyz\), cho hai điểm \(A(1;2;4),B(0;0;1)\) và mặt cầu \((S):{(x + 1)^2} + {(y - 1)^2} + {z^2} = 4\). Mặt phẳng \((P):ax + by + cz + 3 = 0\) đi qua \(A,B\) và cắt mặt cầu \((S)\)theo giao tuyến là một … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho hai điểm \(A(1;2;4),B(0;0;1)\) và mặt cầu \((S):{(x + 1)^2} + {(y – 1)^2} + {z^2} = 4\). Mặt phẳng \((P):ax + by + cz + 3 = 0\) đi qua \(A,B\) và cắt mặt cầu \((S)\)theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tính \(T = a + b + c\).

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 16\) và các điểm \(A\left( {1;0;2} \right)\), \(B\left( { – 1;2;2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua hai điểm \(A\), \(B\) sao cho thiết diện của \(\left( P \right)\) với mặt cầu \(\left( S \right)\) có diện tích nhỏ nhất. Khi viết phương trình \(\left( P \right)\) dưới dạng \(\left( P \right):ax + by + cz + 3 = 0\). Tính \(T = a + b + c\).

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) và các điểm \(A\left( {1;0;2} \right)\), \(B\left( { - 1;2;2} \right)\). … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 16\) và các điểm \(A\left( {1;0;2} \right)\), \(B\left( { – 1;2;2} \right)\). Gọi \(\left( P \right)\) là mặt phẳng đi qua hai điểm \(A\), \(B\) sao cho thiết diện của \(\left( P \right)\) với mặt cầu \(\left( S \right)\) có diện tích nhỏ nhất. Khi viết phương trình \(\left( P \right)\) dưới dạng \(\left( P \right):ax + by + cz + 3 = 0\). Tính \(T = a + b + c\).

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\)và đường thẳng \(\Delta :\frac{{x – 6}}{{ – 3}} = \frac{{y – 2}}{2} = \frac{{z – 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4;3;4} \right)\), song song với đường thẳng \(\Delta \) và tiếp xúc với mặt cầu \(\left( S \right)\)là:

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\)và đường thẳng \(\Delta :\frac{{x - 6}}{{ - 3}} = \frac{{y - 2}}{2} = … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\)và đường thẳng \(\Delta :\frac{{x – 6}}{{ – 3}} = \frac{{y – 2}}{2} = \frac{{z – 2}}{2}\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {4;3;4} \right)\), song song với đường thẳng \(\Delta \) và tiếp xúc với mặt cầu \(\left( S \right)\)là:

Trong không gian Oxyz, cho hai điểm \(A(4;3;5)\)và\(B( – 4; – 1; – 3)\). Xét khối nón \((N)\), có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính A B. Khi \((N)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \((N)\) có phương trình dạng \(2x + by + cz + d = 0\). Giá trị của \(b + c + d\) bằng

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian Oxyz, cho hai điểm \(A(4;3;5)\)và\(B( - 4; - 1; - 3)\). Xét khối nón \((N)\), có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính A B. Khi \((N)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy … [Đọc thêm...] vềTrong không gian Oxyz, cho hai điểm \(A(4;3;5)\)và\(B( – 4; – 1; – 3)\). Xét khối nón \((N)\), có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính A B. Khi \((N)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \((N)\) có phương trình dạng \(2x + by + cz + d = 0\). Giá trị của \(b + c + d\) bằng

Trong không gian \(Oxyz\), cho mặt cầu \((S):{(x – 1)^2} + {(y + 2)^2} + {(z – 3)^2} = 48\). Gọi \((P)\) là mặt phẳng đi qua 2 điểm \(A(0;0; – 4)\) và \(B(2;0;0)\) và cắt \((S)\) theo giao tuyến là đường tròn \((C)\). Khối nón \((N)\) có đỉnh là tâm của \((S)\) và đáy là đường tròn \((C)\) có thể tích lớn nhất bằng

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(Oxyz\), cho mặt cầu \((S):{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 48\). Gọi \((P)\) là mặt phẳng đi qua 2 điểm \(A(0;0; - 4)\) và \(B(2;0;0)\) và cắt \((S)\) theo giao tuyến là đường tròn \((C)\). Khối … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \((S):{(x – 1)^2} + {(y + 2)^2} + {(z – 3)^2} = 48\). Gọi \((P)\) là mặt phẳng đi qua 2 điểm \(A(0;0; – 4)\) và \(B(2;0;0)\) và cắt \((S)\) theo giao tuyến là đường tròn \((C)\). Khối nón \((N)\) có đỉnh là tâm của \((S)\) và đáy là đường tròn \((C)\) có thể tích lớn nhất bằng

Trong không gian\(Oxyz\), cho mặt cầu\((S)\): \({(x – 1)^2} + {(y + 2)^2} + {(z – 3)^2} = 27\). Gọi \((\alpha )\) là mặt phẳng đi qua hai điểm \(A(0;0; – 4)\), \(B(2;0;0)\) và cắt \((S)\) theo giao tuyến là đường tròn\((C)\). Xét các khối nón có đỉnh là tâm của \((S)\) và đáy là \((C)\). Biết rằng khi thể tích của khối nón lớn nhất thì mặt phẳng \((\alpha )\) có phương trình dạng \(ax + by – z + d = 0\). Tính \(P = a – b – d\).

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian\(Oxyz\), cho mặt cầu\((S)\): \({(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 27\). Gọi \((\alpha )\) là mặt phẳng đi qua hai điểm \(A(0;0; - 4)\), \(B(2;0;0)\) và cắt \((S)\) theo giao tuyến là đường … [Đọc thêm...] vềTrong không gian\(Oxyz\), cho mặt cầu\((S)\): \({(x – 1)^2} + {(y + 2)^2} + {(z – 3)^2} = 27\). Gọi \((\alpha )\) là mặt phẳng đi qua hai điểm \(A(0;0; – 4)\), \(B(2;0;0)\) và cắt \((S)\) theo giao tuyến là đường tròn\((C)\). Xét các khối nón có đỉnh là tâm của \((S)\) và đáy là \((C)\). Biết rằng khi thể tích của khối nón lớn nhất thì mặt phẳng \((\alpha )\) có phương trình dạng \(ax + by – z + d = 0\). Tính \(P = a – b – d\).

Khối (H) được tạo thành là phần chung khi giao nhau hai khối nón có cùng chiều cao h, có các bán kính đường tròn đáy lần lượt là R và r sao cho đỉnh của khối nón này trùng với tâm đường tròn đáy của khối nón kia. Tìm giá trị lớn nhất của thể tích khối (H), biết rằng R và r thoả mãn phương trình \({X^2} – {(x + y)^2}X + xy = 0\quad \left( {x,y > \frac{1}{2}} \right)\).

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Khối (H) được tạo thành là phần chung khi giao nhau hai khối nón có cùng chiều cao h, có các bán kính đường tròn đáy lần lượt là R và r sao cho đỉnh của khối nón này trùng với tâm đường tròn đáy của khối nón kia. Tìm giá … [Đọc thêm...] vềKhối (H) được tạo thành là phần chung khi giao nhau hai khối nón có cùng chiều cao h, có các bán kính đường tròn đáy lần lượt là R và r sao cho đỉnh của khối nón này trùng với tâm đường tròn đáy của khối nón kia. Tìm giá trị lớn nhất của thể tích khối (H), biết rằng R và r thoả mãn phương trình \({X^2} – {(x + y)^2}X + xy = 0\quad \left( {x,y > \frac{1}{2}} \right)\).

Trong không gian \(\left( {Oxyz} \right)\), cho hai điểm \(A\left( {0;8;2} \right)\), \(B\left( {9; – 7;23} \right)\) và mặt cầu \(\left( S \right)\) có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\). Mặt phẳng \(\left( P \right):x + by + cz + d = 0\) đi qua điểm \(A\) và tiếp xúc với mặt cầu \(\left( S \right)\) sao cho khoảng cách từ \(B\) đến mặt phẳng \(\left( P \right)\) lớn nhất. Giá trị của \(b + c + d\) khi đó là

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(\left( {Oxyz} \right)\), cho hai điểm \(A\left( {0;8;2} \right)\), \(B\left( {9; - 7;23} \right)\) và mặt cầu \(\left( S \right)\) có phương trình \(\left( S \right):{\left( {x - 5} \right)^2} + {\left( … [Đọc thêm...] vềTrong không gian \(\left( {Oxyz} \right)\), cho hai điểm \(A\left( {0;8;2} \right)\), \(B\left( {9; – 7;23} \right)\) và mặt cầu \(\left( S \right)\) có phương trình \(\left( S \right):{\left( {x – 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z – 7} \right)^2} = 72\). Mặt phẳng \(\left( P \right):x + by + cz + d = 0\) đi qua điểm \(A\) và tiếp xúc với mặt cầu \(\left( S \right)\) sao cho khoảng cách từ \(B\) đến mặt phẳng \(\left( P \right)\) lớn nhất. Giá trị của \(b + c + d\) khi đó là

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;3} \right)\) bán kính \(R = 3\) và hai điểm \(M\left( {2;0;0} \right),\)\(N\left( {0;1;0} \right)\). \(\left( \alpha \right):x + by + cz + d = 0\) là mặt phẳng qua MN và cắt \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính \(r\) lớn nhất. Tính \(T = b + c + d\).

Ngày 03/05/2021 Thuộc chủ đề:Trắc nghiệm Phương trình mặt phẳng Tag với:Phuong trinh mp VDC, TN THPT 2021

DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;3} \right)\) bán kính \(R = 3\) và hai điểm \(M\left( {2;0;0} \right),\)\(N\left( {0;1;0} \right)\). \(\left( \alpha \right):x + by + cz + d = … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;3} \right)\) bán kính \(R = 3\) và hai điểm \(M\left( {2;0;0} \right),\)\(N\left( {0;1;0} \right)\). \(\left( \alpha \right):x + by + cz + d = 0\) là mặt phẳng qua MN và cắt \(\left( S \right)\) theo giao tuyến là đường tròn có bán kính \(r\) lớn nhất. Tính \(T = b + c + d\).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 76
  • Trang 77
  • Trang 78
  • Trang 79
  • Trang 80
  • Interim pages omitted …
  • Trang 86
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.