• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

The tich da dien VDC

(Chuyên Lương Văn Tụy – Ninh Bình 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = 1\), cạnh bên \(SA = 1\) và vuông góc với mặt phẳng đáy \((ABCD)\). Kí hiệu \(M\) là điểm di động trên đoạn \(CD\) và \(N\) là điểm di động trên đoạn \(CB\) sao cho \(MAN = 45^\circ \). Thể tích nhỏ nhất của khối chóp \(S \cdot AMN\) là

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Chuyên Lương Văn Tụy – Ninh Bình 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = 1\), cạnh bên \(SA = 1\) và vuông góc với mặt phẳng đáy \((ABCD)\). Kí hiệu \(M\) là điểm di động trên đoạn \(CD\) và \(N\) là điểm di động trên đoạn \(CB\) sao cho \(MAN = 45^\circ \). Thể tích nhỏ nhất của khối chóp \(S \cdot AMN\) là A. \(\frac{{\sqrt 2 … [Đọc thêm...] về

(Chuyên Lương Văn Tụy – Ninh Bình 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = 1\), cạnh bên \(SA = 1\) và vuông góc với mặt phẳng đáy \((ABCD)\). Kí hiệu \(M\) là điểm di động trên đoạn \(CD\) và \(N\) là điểm di động trên đoạn \(CB\) sao cho \(MAN = 45^\circ \). Thể tích nhỏ nhất của khối chóp \(S \cdot AMN\) là

(Chuyên Lam Sơn 2022) Trên cạnh \(AD\) của hình vuông \(ABCD\) cạnh 1, người ta lấy điểm \(M\) sao cho \(AM = x(0 \le x \le 1)\) và trên nửa đường thẳng \(Ax\) vuông góc với mặt phẳng chứa hình vuông, người ta lấy điểm \(S\) vói \(SA = y\) thỏa mãn \(y > 0\) và \({x^2} + {y^2} = 1\). Biết khi \(M\) thay đổi trên đoạn \(AD\) thì thể tích của khối chóp \(S.ABCM\) đạt giá trị lớn nhất bằng \(\frac{{\sqrt m }}{n}\) với \(m,n \in {\mathbb{N}^*}\) và \(m,n\) nguyên tố cùng nhau. Tính \(T = m + n\).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Chuyên Lam Sơn 2022) Trên cạnh \(AD\) của hình vuông \(ABCD\) cạnh 1, người ta lấy điểm \(M\) sao cho \(AM = x(0 \le x \le 1)\) và trên nửa đường thẳng \(Ax\) vuông góc với mặt phẳng chứa hình vuông, người ta lấy điểm \(S\) vói \(SA = y\) thỏa mãn \(y > 0\) và \({x^2} + {y^2} = 1\). Biết khi \(M\) thay đổi trên đoạn \(AD\) thì thể tích của khối chóp \(S.ABCM\) … [Đọc thêm...] về

(Chuyên Lam Sơn 2022) Trên cạnh \(AD\) của hình vuông \(ABCD\) cạnh 1, người ta lấy điểm \(M\) sao cho \(AM = x(0 \le x \le 1)\) và trên nửa đường thẳng \(Ax\) vuông góc với mặt phẳng chứa hình vuông, người ta lấy điểm \(S\) vói \(SA = y\) thỏa mãn \(y > 0\) và \({x^2} + {y^2} = 1\). Biết khi \(M\) thay đổi trên đoạn \(AD\) thì thể tích của khối chóp \(S.ABCM\) đạt giá trị lớn nhất bằng \(\frac{{\sqrt m }}{n}\) với \(m,n \in {\mathbb{N}^*}\) và \(m,n\) nguyên tố cùng nhau. Tính \(T = m + n\).

(THPT Hương Sơn – Hà Tĩnh – 2022) Cho tứ diện đều \(ABCD\) có tất cả các cạnh bằng 1. Gọi \(M\) là điểm thuộc cạnh \(BC\) sao cho\(MC = 2MB\); \(N,\,P\) lần lượt là trung điểm của \(BD\) và \(AD\). Gọi \(Q\) là giao điểm của \(AC\) và \(\left( {MNP} \right)\). Thể tích khối đa diện \(ABMNPQ\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Hương Sơn - Hà Tĩnh - 2022) Cho tứ diện đều \(ABCD\) có tất cả các cạnh bằng 1. Gọi \(M\) là điểm thuộc cạnh \(BC\) sao cho\(MC = 2MB\); \(N,\,P\) lần lượt là trung điểm của \(BD\) và \(AD\). Gọi \(Q\) là giao điểm của \(AC\) và \(\left( {MNP} \right)\). Thể tích khối đa diện \(ABMNPQ\) bằng A. \(\frac{{7\sqrt 2 }}{{216}}\). B. \(\frac{{13\sqrt 2 … [Đọc thêm...] về

(THPT Hương Sơn – Hà Tĩnh – 2022) Cho tứ diện đều \(ABCD\) có tất cả các cạnh bằng 1. Gọi \(M\) là điểm thuộc cạnh \(BC\) sao cho\(MC = 2MB\); \(N,\,P\) lần lượt là trung điểm của \(BD\) và \(AD\). Gọi \(Q\) là giao điểm của \(AC\) và \(\left( {MNP} \right)\). Thể tích khối đa diện \(ABMNPQ\) bằng

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = 2a\)và \(AA’ = a\) (tham khảo hình vẽ bên). Tính khoảng cách \(d\) giữa hai đường thẳng \(AB’,\)\(A’C\).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = 2a\)và \(AA' = a\) (tham khảo hình vẽ bên). Tính khoảng cách \(d\) giữa hai đường thẳng \(AB',\)\(A'C\). A. \(d = \frac{{2a}}{3}\). B. \(d = \frac{{\sqrt 3 a}}{2}\). C. \(d = \frac{{\sqrt 2 a}}{3}\). D. \(d = … [Đọc thêm...] về

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lăng trụ đứng \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\), \(AC = 2a\)và \(AA’ = a\) (tham khảo hình vẽ bên). Tính khoảng cách \(d\) giữa hai đường thẳng \(AB’,\)\(A’C\).

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lập phương \(ABCD.A’B’C’D’\) có cạnh \(a\). Gọi \(M,N\) và \(E\) lần lượt là trung điểm các cạnh \(AA’,C’D’\) và \(CC’\)(tham khảo hình vẽ bên). Tính thể tích \(V\)của khối tứ diện \(BMNE\).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh \(a\). Gọi \(M,N\) và \(E\) lần lượt là trung điểm các cạnh \(AA',C'D'\) và \(CC'\)(tham khảo hình vẽ bên). Tính thể tích \(V\)của khối tứ diện \(BMNE\). A. \(V = \frac{{{a^3}}}{{24}}\). B. \(V = \frac{{{a^3}}}{6}\). C. \(V = \frac{{{a^3}}}{8}\). D. \(V = … [Đọc thêm...] về

(THPT Nguyễn Tất Thành-Đh-SP-HN) Cho hình lập phương \(ABCD.A’B’C’D’\) có cạnh \(a\). Gọi \(M,N\) và \(E\) lần lượt là trung điểm các cạnh \(AA’,C’D’\) và \(CC’\)(tham khảo hình vẽ bên). Tính thể tích \(V\)của khối tứ diện \(BMNE\).

(Sở Hà Tĩnh 2022) Cho hình hộp đứng \(ABCD \cdot A\prime B\prime C\prime D\prime \) có cạnh \(AA\prime = 2\), đáy \(ABCD\) là hình thoi với \(ABC\) là tam giác đều cạnh bằng 4. Gọi \(M,N,P\) lần lượt là trung điểm của \(B\prime C\prime ,C\prime D\prime ,DD\prime \) và \(Q\) thuộc cạnh \(BC\) sao cho \(QC = 3QB\). Thể tích của khối tứ diện \(MNPQ\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Sở Hà Tĩnh 2022) Cho hình hộp đứng \(ABCD \cdot A\prime B\prime C\prime D\prime \) có cạnh \(AA\prime = 2\), đáy \(ABCD\) là hình thoi với \(ABC\) là tam giác đều cạnh bằng 4. Gọi \(M,N,P\) lần lượt là trung điểm của \(B\prime C\prime ,C\prime D\prime ,DD\prime \) và \(Q\) thuộc cạnh \(BC\) sao cho \(QC = 3QB\). Thể tích của khối tứ diện \(MNPQ\) bằng A. … [Đọc thêm...] về

(Sở Hà Tĩnh 2022) Cho hình hộp đứng \(ABCD \cdot A\prime B\prime C\prime D\prime \) có cạnh \(AA\prime = 2\), đáy \(ABCD\) là hình thoi với \(ABC\) là tam giác đều cạnh bằng 4. Gọi \(M,N,P\) lần lượt là trung điểm của \(B\prime C\prime ,C\prime D\prime ,DD\prime \) và \(Q\) thuộc cạnh \(BC\) sao cho \(QC = 3QB\). Thể tích của khối tứ diện \(MNPQ\) bằng

(Sở Ninh Bình 2022) Cho hình chóp tứ giác đều \(S.ABCD\). Một mặt cầu \((J)\) ( \(J\) và \(S\) cùng phía với \((ABCD)\)) tiếp xúc với \((ABCD)\) tại \(A\), đồng thời tiếp xúc ngoài với mặt cầu nội tiếp hình chóp. Một mặt phẳng \((P)\) đi qua \(J\) và \(BC\). Gọi \(\varphi \) là góc giữa \((P)\) và \((ABCD)\). Tính \(\tan \varphi \) biết các đường chéo của thiết diện của hình chóp cắt bởi \((P)\) lần lượt cắt và vuông góc với \(SA,SD\).

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Sở Ninh Bình 2022) Cho hình chóp tứ giác đều \(S.ABCD\). Một mặt cầu \((J)\) ( \(J\) và \(S\) cùng phía với \((ABCD)\)) tiếp xúc với \((ABCD)\) tại \(A\), đồng thời tiếp xúc ngoài với mặt cầu nội tiếp hình chóp. Một mặt phẳng \((P)\) đi qua \(J\) và \(BC\). Gọi \(\varphi \) là góc giữa \((P)\) và \((ABCD)\). Tính \(\tan \varphi \) biết các đường chéo của thiết … [Đọc thêm...] về

(Sở Ninh Bình 2022) Cho hình chóp tứ giác đều \(S.ABCD\). Một mặt cầu \((J)\) ( \(J\) và \(S\) cùng phía với \((ABCD)\)) tiếp xúc với \((ABCD)\) tại \(A\), đồng thời tiếp xúc ngoài với mặt cầu nội tiếp hình chóp. Một mặt phẳng \((P)\) đi qua \(J\) và \(BC\). Gọi \(\varphi \) là góc giữa \((P)\) và \((ABCD)\). Tính \(\tan \varphi \) biết các đường chéo của thiết diện của hình chóp cắt bởi \((P)\) lần lượt cắt và vuông góc với \(SA,SD\).

(Sở Thái Nguyên 2022) Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\) và \(D\), \(AB = AD = a\), \(CD = 2a\). Hình chiếu của đỉnh \(S\) lên mặt \(\left( {ABCD} \right)\) trùng với trung điểm của \(BD\). Biết thể tích khối chóp \(S.ABCD\) bằng \(\frac{{\sqrt 2 {a^3}}}{2}\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Sở Thái Nguyên 2022) Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\) và \(D\), \(AB = AD = a\), \(CD = 2a\). Hình chiếu của đỉnh \(S\) lên mặt \(\left( {ABCD} \right)\) trùng với trung điểm của \(BD\). Biết thể tích khối chóp \(S.ABCD\) bằng \(\frac{{\sqrt 2 {a^3}}}{2}\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng A. … [Đọc thêm...] về

(Sở Thái Nguyên 2022) Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\) và \(D\), \(AB = AD = a\), \(CD = 2a\). Hình chiếu của đỉnh \(S\) lên mặt \(\left( {ABCD} \right)\) trùng với trung điểm của \(BD\). Biết thể tích khối chóp \(S.ABCD\) bằng \(\frac{{\sqrt 2 {a^3}}}{2}\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

(Cụm Trường Nghệ An – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\,\,AD = a\sqrt 3 \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Cosin của góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {SBC} \right)\) bằng:

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Cụm Trường Nghệ An - 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\,\,AD = a\sqrt 3 \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Cosin của góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {SBC} \right)\) bằng: A. \(\frac{{2\sqrt 5 }}{5}\). B. \(\frac{{\sqrt {13} }}{4}\). C. … [Đọc thêm...] về

(Cụm Trường Nghệ An – 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\,\,AD = a\sqrt 3 \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Cosin của góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {SBC} \right)\) bằng:

(Sở Vĩnh Phúc 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật \(AB = a\sqrt 3 ,SA = SB = SC = SD = 2a\). Giá trị lớn nhất của thể tích khối chóp \(S.ABCD\)bằng:

Ngày 19/06/2022 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich da dien VDC, TN THPT 2022

Câu hỏi: (Sở Vĩnh Phúc 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật \(AB = a\sqrt 3 ,SA = SB = SC = SD = 2a\). Giá trị lớn nhất của thể tích khối chóp \(S.ABCD\)bằng: A. \(\frac{{13}}{{12}}{a^3}\). B. \(\frac{{13\sqrt 2 }}{{12}}{a^3}\). C. \(\frac{{13\sqrt 6 }}{{12}}{a^3}\). D. \(\frac{{13\sqrt 3 }}{{12}}{a^3}\). Lời giải: Chọn … [Đọc thêm...] về

(Sở Vĩnh Phúc 2022) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật \(AB = a\sqrt 3 ,SA = SB = SC = SD = 2a\). Giá trị lớn nhất của thể tích khối chóp \(S.ABCD\)bằng:

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Trang 5
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.