• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức trong tam giác

Đề bài: Cho $\triangle ABC$ có $r,R$ theo thứ tự là bán kính đường tròn nội tiếp và ngoại tiếp, chứng minh rằng:  $\frac{r}{R}\leq \frac{1}{2}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho $\triangle ABC$ có $r,R$ theo thứ tự là bán kính đường tròn nội tiếp và ngoại tiếp, chứng minh rằng:  $\frac{r}{R}\leq \frac{1}{2}$ Lời giải Đề bài: Cho $\triangle ABC$ có $r,R$ theo thứ tự là bán kính đường tròn nội tiếp và ngoại tiếp, chứng minh rằng:  $\frac{r}{R}\leq \frac{1}{2}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho $\triangle ABC$ có $r,R$ theo thứ tự là bán kính đường tròn nội tiếp và ngoại tiếp, chứng minh rằng:  $\frac{r}{R}\leq \frac{1}{2}$

Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì                             \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì                             \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\) Lời giải Đề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì                             \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\) Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng nếu $a, b, c$ là độ dài ba cạnh của một tam giác có chu vi bằng $3$ thì                             \(3{a^2} + 3{b^2} + 3{c^2} + 4abc \ge 13\)

Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$ Lời giải Đề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$ Lời giải … [Đọc thêm...] vềĐề bài: Gọi $a,b,c$ là độ dài các cạnh $\Delta ABC$. Tìm giá trị nhỏ nhất của biểu thức                                          $Q=\frac{aA+bB+cC}{a+b+c}$

Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$.

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$. Lời giải Đề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$. Lời giải … [Đọc thêm...] vềĐề bài: Chứng minh rằng trong mọi tam giác $ABC$ nhọn ta đều có:             $\frac{2}{3}(\sin A+\sin B+\sin C)+\frac{1}{3}(\tan A+\tan B+\tan C)> \pi$.

Đề bài: 1)   Cho tam giác $ABC$ thỏa mãn điều kiện: $max ({h_a},{h_b},{h_c}) < 1$Chứng minh rằng:  khi đó ta có   $S < \frac{{\sqrt 3 }}{3}$2)  Cho tam giác $ABC$ thỏa mãn điều kiện : ${l_a} + {l_b} + {l_c} = \frac{{a + b + c}}{3}(\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}})$Chứng minh rằng: $R \ge 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: 1)   Cho tam giác $ABC$ thỏa mãn điều kiện: $max ({h_a},{h_b},{h_c}) < 1$Chứng minh rằng:  khi đó ta có   $S < \frac{{\sqrt 3 }}{3}$2)  Cho tam giác $ABC$ thỏa mãn điều kiện : ${l_a} + {l_b} + {l_c} = \frac{{a + b + c}}{3}(\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}})$Chứng minh rằng: $R \ge 1$ Lời giải Đề bài: 1)   Cho tam giác … [Đọc thêm...] vềĐề bài: 1)   Cho tam giác $ABC$ thỏa mãn điều kiện: $max ({h_a},{h_b},{h_c}) < 1$Chứng minh rằng:  khi đó ta có   $S < \frac{{\sqrt 3 }}{3}$2)  Cho tam giác $ABC$ thỏa mãn điều kiện : ${l_a} + {l_b} + {l_c} = \frac{{a + b + c}}{3}(\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}})$Chứng minh rằng: $R \ge 1$

Đề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$ Lời giải Đề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho: $\triangle ABC$ và $x,y,z>0$.Chứng minh rằng:$\frac{1}{x}\cos A+\frac{1}{y}\cos B+\frac{1}{z}\cos C\leq \frac{x^{2}+y^{2}+z^{2}}{2xyz}$

Đề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $ Lời giải Đề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $ Lời giải … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ có số đo ba cạnh là $a, b, c$ và chu vi $2p$. Giả sử  $ c \le b \le a $. Chứng minh rằng:  $p^2 \le \frac{9}{4}ab. $

Đề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: $C\sqrt{3} \leq \sqrt[3]{C_1C_2C_3}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: $C\sqrt{3} \leq \sqrt[3]{C_1C_2C_3}$ Lời giải Đề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: … [Đọc thêm...] vềĐề bài:    Cho ba đường tròn có chu vi $C_1, C_2, C_3$ từng đôi tiếp xúc ngoài  tại $A, B, C$. Vòng tròn nội tiếp tam giác $ABC$ có chu vi $C$.Chứng minh: $C\sqrt{3} \leq \sqrt[3]{C_1C_2C_3}$

Đề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $ 

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $  Lời giải Đề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $  Lời giải Vì a, b, c là số đo 3 cạnh của một tam giác, … [Đọc thêm...] vềĐề bài: Cho $a, b, c$ là số đo 3 cạnh của tam giác $ABC$. Chứng minh rằng:  $ a^2 + b^2 + c^2 < 2( ab + bc + ca) $ 

Đề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p - a}  + \sqrt {p - b}  + \sqrt {p - c}  \le \sqrt {3p} \)

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p - a}  + \sqrt {p - b}  + \sqrt {p - c}  \le \sqrt {3p} \) Lời giải Đề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p … [Đọc thêm...] vềĐề bài: Biết rằng $a, b, c$ là độ dài các cạnh của một tam giác, $p$ là nửa chu vi, chứng minh rằng:                          \(\sqrt p  < \sqrt {p - a}  + \sqrt {p - b}  + \sqrt {p - c}  \le \sqrt {3p} \)

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.