• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{1}{{2Rr}} \le \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \le \frac{1}{{4{r^2}}}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{1}{{2Rr}} \le \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \le \frac{1}{{4{r^2}}}$ Lời giải Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{1}{{2Rr}} \le \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \le \frac{1}{{4{r^2}}}$ Lời giải … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{1}{{2Rr}} \le \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \le \frac{1}{{4{r^2}}}$

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$ Lời giải Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$ Lời giải Đặt ${S_m}$ là diện tích tam giác với ba cạnh là ${m_a},{m_b},{m_c}$. Ta có: … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{m_a.m_b.m_c}}{{m_a^2 + m_b^2 + m_c^2}} \ge r$

Đề bài: Cho tam giác $ABC$ vuông tại $A$. Chứng  minh rằng : $h_a \le \left( {1 + \sqrt 2 } \right)r \le R$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$ vuông tại $A$. Chứng  minh rằng : $h_a \le \left( {1 + \sqrt 2 } \right)r \le R$ Lời giải Đề bài: Cho tam giác $ABC$ vuông tại $A$. Chứng  minh rằng : $h_a \le \left( {1 + \sqrt 2 } \right)r \le R$ Lời giải $\frac{{{h_a}}}{r} = \frac{{\frac{{2S}}{a}}}{{\frac{S}{p}}} = … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$ vuông tại $A$. Chứng  minh rằng : $h_a \le \left( {1 + \sqrt 2 } \right)r \le R$

Đề bài:  Cho tam giác $ABC$. Chứng minh rằng: $m_a + m_b + m_c \le r_a + r_b + r_c$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài:  Cho tam giác $ABC$. Chứng minh rằng: $m_a + m_b + m_c \le r_a + r_b + r_c$ Lời giải Đề bài:  Cho tam giác $ABC$. Chứng minh rằng: $m_a + m_b + m_c \le r_a + r_b + r_c$ Lời giải Ta có: ${r_a} + {r_b} + {r_c} = 4R + r$ (Xem cách chứng minh hệ thức này ở câu a) Bài 103664)Vậy: ${m_a} + … [Đọc thêm...] vềĐề bài:  Cho tam giác $ABC$. Chứng minh rằng: $m_a + m_b + m_c \le r_a + r_b + r_c$

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $ Lời giải Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $ Lời giải $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}}  \Leftrightarrow … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{h_a}}}{{{l_a}}} \ge \sqrt {\frac{{2r}}{R}} $

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{m_a}}}{{{l_a}}} \ge \frac{{b + c}}{{2\sqrt {bc} }}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{m_a}}}{{{l_a}}} \ge \frac{{b + c}}{{2\sqrt {bc} }}$ Lời giải Đề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{m_a}}}{{{l_a}}} \ge \frac{{b + c}}{{2\sqrt {bc} }}$ Lời giải $\frac{{{m_a}}}{{{l_a}}} \ge \frac{{b + c}}{{2\sqrt {b + c} }} … [Đọc thêm...] vềĐề bài: Cho tam giác $ABC$. Chứng minh rằng : $\frac{{{m_a}}}{{{l_a}}} \ge \frac{{b + c}}{{2\sqrt {bc} }}$

Đề bài: Cho $a, b, c$ là độ dài các cạnh và $r$ là bán kính đường tròn nội tiếp của một tam giác. Chứng minh rằng: $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \le \frac{1}{4r^2}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho $a, b, c$ là độ dài các cạnh và $r$ là bán kính đường tròn nội tiếp của một tam giác. Chứng minh rằng: $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \le \frac{1}{4r^2}$ Lời giải Đề bài: Cho $a, b, c$ là độ dài các cạnh và $r$ là bán kính đường tròn nội tiếp của một tam giác. Chứng minh rằng: $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \le … [Đọc thêm...] vềĐề bài: Cho $a, b, c$ là độ dài các cạnh và $r$ là bán kính đường tròn nội tiếp của một tam giác. Chứng minh rằng: $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \le \frac{1}{4r^2}$

Đề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức trong tam giác

Đề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$ Lời giải Đề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$ Lời giải Đặt $x=2b+2c-a ; … [Đọc thêm...] vềĐề bài: Cho $a,b,c$ là 3 cạnh tam giác. Chứng minh:$\displaystyle \frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\geq 1$

  • « Chuyển đến Trang trước
  • Trang 1
  • Trang 2
  • Trang 3
  • Trang 4

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.