Câu hỏi: Một chất điểm chuyển động theo quy luật (t tính theo giây). Vận tốc của chất điểm đạt giá trị nhỏ nhất tại thời điểm nào? A.t=1 giây B.t=3 giây C.t=5 giây D.t=16 giây Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại phản hồi … [Đọc thêm...] vềĐề: Một chất điểm chuyển động theo quy luật (t tính theo giây). Vận tốc của chất điểm đạt giá trị nhỏ nhất tại thời điểm nào?
Kết quả tìm kiếm cho: ty so
Đề: Người ta muốn mạ vàng cho bề mặt phía ngoài của một cái hộp dạng hình hộp đứng không nắp (nắp trên), có đáy là một hình vuông. Tìm chiều cao của hộp để lượng vàng phải dùng để mạ là ít nhất, biết lớp mạ ở mọi nơi như nhau, giao giữa các mặt là không đáng kể và thể tích của hộp là 4 dm3.
Câu hỏi: Người ta muốn mạ vàng cho bề mặt phía ngoài của một cái hộp dạng hình hộp đứng không nắp (nắp trên), có đáy là một hình vuông. Tìm chiều cao của hộp để lượng vàng phải dùng để mạ là ít nhất, biết lớp mạ ở mọi nơi như nhau, giao giữa các mặt là không đáng kể và thể tích của hộp là 4 dm3. A.1 dm B.1,5 dm C.2 … [Đọc thêm...] vềĐề: Người ta muốn mạ vàng cho bề mặt phía ngoài của một cái hộp dạng hình hộp đứng không nắp (nắp trên), có đáy là một hình vuông. Tìm chiều cao của hộp để lượng vàng phải dùng để mạ là ít nhất, biết lớp mạ ở mọi nơi như nhau, giao giữa các mặt là không đáng kể và thể tích của hộp là 4 dm3.
Đề: Một vật chuyển động theo quy luật \(s = 9{t^2} – {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Câu hỏi: Một vật chuyển động theo quy luật \(s = 9{t^2} - {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu? A.27 m/s. B.15 … [Đọc thêm...] vềĐề: Một vật chuyển động theo quy luật \(s = 9{t^2} – {t^3},\) với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 5 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Đề: Một ngọn hải đăng được đặt tại vị trí \(A\) trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\) rồi đi bộ đến \(C\) với vận tốc \(6km/h\) . Vị trí của điểm \(M\) cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho \(C\) ít tốn thời gian nhất.
Câu hỏi: Một ngọn hải đăng được đặt tại vị trí \(A\) trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\) rồi đi bộ đến \(C\) với vận tốc \(6km/h\) . Vị trí của điểm \(M\) cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho … [Đọc thêm...] vềĐề: Một ngọn hải đăng được đặt tại vị trí \(A\) trên mặt biển cách bờ biển một khoảng \(AB = 5km\) . Trên bờ biển có một cái kho ở cách \(B\) \(7\) km. Người canh hải đăng có thể chèo đò đến điểm \(M\) trên bờ biển với vận tốc \(4km/h\) rồi đi bộ đến \(C\) với vận tốc \(6km/h\) . Vị trí của điểm \(M\) cách \(B\) một khoảng bằng bao nhiêu để người đó đi đến kho \(C\) ít tốn thời gian nhất.
Đề: Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí nhất.
Câu hỏi: Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí … [Đọc thêm...] vềĐề: Một đại lý xăng dầu cần làm một bồn chứa dầu hình trục có đáy và nắp đậy bằng tôn với thể tích \(16\pi \left( {{m^3}} \right)\). Biết rằng giá thành (cả vật liệu và tiền công) được tính theo mét vuông, tìm đường kính đáy của bồn để đại lý phải trả ít chi phí nhất.
Đề: Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu?
Câu hỏi: Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi … [Đọc thêm...] vềĐề: Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (giây) kể từ khi quả bóng được đá lên, h là độ cao (mét). Giả thiết quả bóng được đá từ độ cao 1 m và đạt được độ cao 6 m sau 1 giây đồng thời sau 6 giây quả bóng lại trở về độ cao 1 m. Hỏi trong khoảng thời gian 5 giây, kể từ lúc bắt đầu được đá, độ cao lớn nhất của quả bóng đạt được bằng bao nhiêu?
Đề: Người ta dùng một tấm sắt tây hình chữ nhật có kích thước \(30 \times 48\)cm để làm một cái hộp không nắp bằng cách cắt bỏ đi bốn hình vuông bằng nhau ở bốn góc rồi gấp lên. Thể tích lớn nhất của hộp là
Câu hỏi: Người ta dùng một tấm sắt tây hình chữ nhật có kích thước \(30 \times 48\)cm để làm một cái hộp không nắp bằng cách cắt bỏ đi bốn hình vuông bằng nhau ở bốn góc rồi gấp lên. Thể tích lớn nhất của hộp là A.3886 \(c{m^3}\) B.3880 \(c{m^3}\) C.3900 \(c{m^3}\) D.3888 \(c{m^3}\) Hãy … [Đọc thêm...] vềĐề: Người ta dùng một tấm sắt tây hình chữ nhật có kích thước \(30 \times 48\)cm để làm một cái hộp không nắp bằng cách cắt bỏ đi bốn hình vuông bằng nhau ở bốn góc rồi gấp lên. Thể tích lớn nhất của hộp là
Đề: Để làm một chiếc cốc bằng thủy tinh hình trụ với đáy cốc dày 1,5 (cm), thành xung quanh cốc dày 0,2 (cm) và có thể tích thật (thể tích cốc đựng được) là \(480\pi \left( {c{m^3}} \right)\)thì người ta cần ít nhất bao nhiêu\(c{m^3}\) thủy tinh?
Câu hỏi: Để làm một chiếc cốc bằng thủy tinh hình trụ với đáy cốc dày 1,5 (cm), thành xung quanh cốc dày 0,2 (cm) và có thể tích thật (thể tích cốc đựng được) là \(480\pi \left( {c{m^3}} \right)\)thì người ta cần ít nhất bao nhiêu\(c{m^3}\) thủy tinh? A.\(71,16\pi \left( {c{m^3}} \right)\) B.\(85,41\pi \left( {c{m^3}} … [Đọc thêm...] vềĐề: Để làm một chiếc cốc bằng thủy tinh hình trụ với đáy cốc dày 1,5 (cm), thành xung quanh cốc dày 0,2 (cm) và có thể tích thật (thể tích cốc đựng được) là \(480\pi \left( {c{m^3}} \right)\)thì người ta cần ít nhất bao nhiêu\(c{m^3}\) thủy tinh?
Đề: Người ta cần xây một hồ nước với dạng khối hộp chữ nhật không nắp có thể tích bằng \(\frac{{288}}{5}{m^3}.\) Đáy hồ là hình chữ nhật có chiều dài gấp rưỡi chiều rộng. Giá thuê nhân công để xây hồ là 500 000 đồng/\({m^2}.\) Nếu kích thước của hồ nước được tính toán để chi phí thuê nhân công là ít nhất thì chi phí đó là bao nhiêu?
Câu hỏi: Người ta cần xây một hồ nước với dạng khối hộp chữ nhật không nắp có thể tích bằng \(\frac{{288}}{5}{m^3}.\) Đáy hồ là hình chữ nhật có chiều dài gấp rưỡi chiều rộng. Giá thuê nhân công để xây hồ là 500 000 đồng/\({m^2}.\) Nếu kích thước của hồ nước được tính toán để chi phí thuê nhân công là ít nhất thì chi phí đó là bao nhiêu? A.28 (triệu … [Đọc thêm...] vềĐề: Người ta cần xây một hồ nước với dạng khối hộp chữ nhật không nắp có thể tích bằng \(\frac{{288}}{5}{m^3}.\) Đáy hồ là hình chữ nhật có chiều dài gấp rưỡi chiều rộng. Giá thuê nhân công để xây hồ là 500 000 đồng/\({m^2}.\) Nếu kích thước của hồ nước được tính toán để chi phí thuê nhân công là ít nhất thì chi phí đó là bao nhiêu?
Đề: Một người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu?
Câu hỏi: Một người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu? A. Cạnh … [Đọc thêm...] vềĐề: Một người muốn làm một chiếc thùng dạng hình hộp chữ nhật không nắp, đáy là hình vuông và có thể tích bằng \(2,16{m^3}.\) Biết giá của vật liệu làm đáy và mặt bên của thùng lần lượt là 90000 đồng/m2 và 36000 đồng/m2. Để làm được chiếc thùng với chi phí mua vật liệu thấp nhất thì người thợ phải chọn các kích thước của chiếc thùng là bao nhiêu?