• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: ty so

[4] Trong không gian \(Oxyz\), cho đường thẳng \(\Delta \) đi qua \(E\left( {1 + 3a; – 2;2 + 3a} \right)\) và có một vectơ chỉ phương \(\overrightarrow u = \left( {a;1;a + 1} \right)\). Biết khi \(a\) thay đổi luôn tồn tại một mặt cầu \(\left( S \right)\) cố định có tâm \(I\left( {m;n;p} \right)\) bán kính \(R\) đi qua điểm \(M\left( {1;1;1} \right)\) và tiếp xúc với đường thẳng \(\Delta \). Một khối nón \(\left( N \right)\) có đỉnh \(I\) và đường tròn đáy của khối nón nằm trên mặt cầu \(\left( S \right)\). Thể tích lớn nhất của khối nón \(\left( N \right)\) là \(\max {V_{\left( N \right)}} = \frac{{q\pi }}{3}\). Khi đó tổng \(m + n + p + q\) bằng

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian \(Oxyz\), cho đường thẳng \(\Delta \) đi qua \(E\left( {1 + 3a; - 2;2 + 3a} \right)\) và có một vectơ chỉ phương \(\overrightarrow u = \left( {a;1;a + 1} \right)\). Biết khi \(a\) thay đổi luôn tồn tại một mặt cầu \(\left( S \right)\) cố định có tâm \(I\left( {m;n;p} \right)\) bán kính \(R\) đi qua điểm \(M\left( {1;1;1} \right)\) và tiếp xúc với đường … [Đọc thêm...] về[4] Trong không gian \(Oxyz\), cho đường thẳng \(\Delta \) đi qua \(E\left( {1 + 3a; – 2;2 + 3a} \right)\) và có một vectơ chỉ phương \(\overrightarrow u = \left( {a;1;a + 1} \right)\). Biết khi \(a\) thay đổi luôn tồn tại một mặt cầu \(\left( S \right)\) cố định có tâm \(I\left( {m;n;p} \right)\) bán kính \(R\) đi qua điểm \(M\left( {1;1;1} \right)\) và tiếp xúc với đường thẳng \(\Delta \). Một khối nón \(\left( N \right)\) có đỉnh \(I\) và đường tròn đáy của khối nón nằm trên mặt cầu \(\left( S \right)\). Thể tích lớn nhất của khối nón \(\left( N \right)\) là \(\max {V_{\left( N \right)}} = \frac{{q\pi }}{3}\). Khi đó tổng \(m + n + p + q\) bằng

[4] Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x + y + z = 0\) và mặt cầu \(\left( S \right)\) có tâm \(I\left( {0;1;2} \right)\) bán kính \(R = 1\). Xét điểm \(M\) thay đổi trên \(\left( P \right)\). Khối nón \(\left( N \right)\) có đỉnh là \(I\) và đường tròn đáy là đường tròn đi qua tất cả các tiếp điểm của tiếp tuyến kẻ từ \(M\) đến \(\left( S \right)\). Khi \(\left( N \right)\) có thể tích lớn nhất, mặt phẳng chứa đường tròn đáy của \(\left( N \right)\) có phương trình là \(x + ay + bz + c = 0\). Giá trị của \(a + b + c\) bằng

Ngày 05/06/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:Cuc tri Hinh hoc Oxyz, Trac nghiem OXYZ VDC

[4] Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x + y + z = 0\) và mặt cầu \(\left( S \right)\) có tâm \(I\left( {0;1;2} \right)\) bán kính \(R = 1\). Xét điểm \(M\) thay đổi trên \(\left( P \right)\). Khối nón \(\left( N \right)\) có đỉnh là \(I\) và đường tròn đáy là đường tròn đi qua tất cả các tiếp điểm của tiếp tuyến kẻ từ \(M\) đến \(\left( S \right)\). … [Đọc thêm...] về[4] Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x + y + z = 0\) và mặt cầu \(\left( S \right)\) có tâm \(I\left( {0;1;2} \right)\) bán kính \(R = 1\). Xét điểm \(M\) thay đổi trên \(\left( P \right)\). Khối nón \(\left( N \right)\) có đỉnh là \(I\) và đường tròn đáy là đường tròn đi qua tất cả các tiếp điểm của tiếp tuyến kẻ từ \(M\) đến \(\left( S \right)\). Khi \(\left( N \right)\) có thể tích lớn nhất, mặt phẳng chứa đường tròn đáy của \(\left( N \right)\) có phương trình là \(x + ay + bz + c = 0\). Giá trị của \(a + b + c\) bằng

Cho đường tròn \(\left( C \right)\) và \(\left( {C’} \right)\) có cùng bán kính \(R = 3\) thỏa mãn tính chất tâm \(O\) của \(\left( C \right)\)thuộc \(\left( {C’} \right)\)và ngược lại tâm \(O’\) của \(\left( {C’} \right)\)thuộc \(\left( C \right)\). Khi hai đường tròn \(\left( C \right)\) và \(\left( {C’} \right)\) quay quanh đường \(OO’\)tạo ra hai mặt cầu \(\left( S \right),\,\left( {S’} \right)\) Tính thể tích \(V\) phần chung của hai khối cầu tạo bởi \(\left( S \right),\,\left( {S’} \right)\)là

Ngày 03/06/2024 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Dien tich hinh phang, the tich tron xoay VDC, Ung dung tich phan 2024

Cho đường tròn \(\left( C \right)\) và \(\left( {C'} \right)\) có cùng bán kính \(R = 3\) thỏa mãn tính chất tâm \(O\) của \(\left( C \right)\)thuộc \(\left( {C'} \right)\)và ngược lại tâm \(O'\) của \(\left( {C'} \right)\)thuộc \(\left( C \right)\). Khi hai đường tròn \(\left( C \right)\) và \(\left( {C'} \right)\) quay quanh đường \(OO'\)tạo ra hai mặt cầu \(\left( S … [Đọc thêm...] vềCho đường tròn \(\left( C \right)\) và \(\left( {C’} \right)\) có cùng bán kính \(R = 3\) thỏa mãn tính chất tâm \(O\) của \(\left( C \right)\)thuộc \(\left( {C’} \right)\)và ngược lại tâm \(O’\) của \(\left( {C’} \right)\)thuộc \(\left( C \right)\). Khi hai đường tròn \(\left( C \right)\) và \(\left( {C’} \right)\) quay quanh đường \(OO’\)tạo ra hai mặt cầu \(\left( S \right),\,\left( {S’} \right)\) Tính thể tích \(V\) phần chung của hai khối cầu tạo bởi \(\left( S \right),\,\left( {S’} \right)\)là

Cho phương trình \({2^{\left( {x + 2} \right)\left( {2x + 1} \right)}}.\ln \left[ {2\left( {x + 2} \right)x + 3} \right] = {2^{y + {x^2} + x + 1}}.\ln \sqrt {{x^2} + y + 1} \) (1) với \(y \ge 0\). Khi \(2{x^2} – y\) đạt giá trị nhỏ nhất thì giá trị của biểu thức \(S = y – x\) bằng

Ngày 02/06/2024 Thuộc chủ đề:Trắc nghiệm Logarit và hàm số lôgarit Tag với:CUC TRI LOGARIT, MAX MIN LOGARIT 2 BIEN

Cho phương trình \({2^{\left( {x + 2} \right)\left( {2x + 1} \right)}}.\ln \left[ {2\left( {x + 2} \right)x + 3} \right] = {2^{y + {x^2} + x + 1}}.\ln \sqrt {{x^2} + y + 1} \) (1) với \(y \ge 0\). Khi \(2{x^2} - y\) đạt giá trị nhỏ nhất thì giá trị của biểu thức \(S = y - x\) bằng A. \(16\). B. \(14\). C. \(10\).\(\) D. \(12\). Lời giải: (1)\( \Leftrightarrow … [Đọc thêm...] vềCho phương trình \({2^{\left( {x + 2} \right)\left( {2x + 1} \right)}}.\ln \left[ {2\left( {x + 2} \right)x + 3} \right] = {2^{y + {x^2} + x + 1}}.\ln \sqrt {{x^2} + y + 1} \) (1) với \(y \ge 0\). Khi \(2{x^2} – y\) đạt giá trị nhỏ nhất thì giá trị của biểu thức \(S = y – x\) bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, - \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, - \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau. A. … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

nbsp; Trong không gian cho tam giác đều \(SAB\) và hình chữ nhật \(ABCD\) với\(AD = 2a\) nằm trên hai mặt phẳng vuông góc. Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\). Biết \(\tan \varphi = \frac{{2\sqrt 2 }}{3}\). Thể tích của khối chóp \(S.ABC\) là

Ngày 30/05/2024 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru, THE TICH LANG TRU VDC

nbsp; Trong không gian cho tam giác đều \(SAB\) và hình chữ nhật \(ABCD\) với\(AD = 2a\) nằm trên hai mặt phẳng vuông góc. Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\). Biết \(\tan \varphi = \frac{{2\sqrt 2 }}{3}\). Thể tích của khối chóp \(S.ABC\) là A. \(V = {a^3}\sqrt 3 \) B. \(V = \frac{{{a^3}\sqrt 3 }}{2}\) C. … [Đọc thêm...] vềnbsp; Trong không gian cho tam giác đều \(SAB\) và hình chữ nhật \(ABCD\) với\(AD = 2a\) nằm trên hai mặt phẳng vuông góc. Gọi \(\varphi \) là góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\). Biết \(\tan \varphi = \frac{{2\sqrt 2 }}{3}\). Thể tích của khối chóp \(S.ABC\) là

Cho lăng trụ tứ giác \(ABCD.A’B’C’D’\) có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\)là trung điểm của \(AD\), đường thẳng \(A’C\) tạo với mặt phẳng \(\left( {ABCD} \right)\)một góc là \({45^0}\). Thể tích khối lăng trụ\(ABCD.A’B’C’D’\) bằng

Ngày 30/05/2024 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru, THE TICH LANG TRU VDC

Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\) có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A'\) lên mặt phẳng \(\left( {ABCD} \right)\)là trung điểm của \(AD\), đường thẳng \(A'C\) tạo với mặt phẳng \(\left( {ABCD} \right)\)một góc là \({45^0}\). Thể tích khối lăng trụ\(ABCD.A'B'C'D'\) bằng A. \(\frac{{16{a^3}}}{3}\). B. \(\frac{{8{a^3}\sqrt {30} … [Đọc thêm...] về

Cho lăng trụ tứ giác \(ABCD.A’B’C’D’\) có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A’\) lên mặt phẳng \(\left( {ABCD} \right)\)là trung điểm của \(AD\), đường thẳng \(A’C\) tạo với mặt phẳng \(\left( {ABCD} \right)\)một góc là \({45^0}\). Thể tích khối lăng trụ\(ABCD.A’B’C’D’\) bằng

Cho hình lăng trụ \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), cạnh \(BC = 2a\) và

\(\widehat {ABC} = {60^0}\). Biết tứ giác \(BCC’B’\) là hình thoi có \(\widehat {B’BC}\) là góc nhọn, mặt phẳng \(\left( {BCC’B’} \right)\)vuông góc với \(\left( {ABC} \right)\), góc giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Thể tích khối lăng trụ \(ABC.A’B’C’\) bằng

Ngày 30/05/2024 Thuộc chủ đề:Trắc nghiệm Thể tích đa diện Tag với:The tich hinh chop hinh lang tru, THE TICH LANG TRU VDC

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), cạnh \(BC = 2a\) và \(\widehat {ABC} = {60^0}\). Biết tứ giác \(BCC'B'\) là hình thoi có \(\widehat {B'BC}\) là góc nhọn, mặt phẳng \(\left( {BCC'B'} \right)\)vuông góc với \(\left( {ABC} \right)\), góc giữa hai mặt phẳng \(\left( {ABB'A'} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Thể … [Đọc thêm...] vềCho hình lăng trụ \(ABC.A’B’C’\) có đáy \(ABC\) là tam giác vuông tại \(A\), cạnh \(BC = 2a\) và

\(\widehat {ABC} = {60^0}\). Biết tứ giác \(BCC’B’\) là hình thoi có \(\widehat {B’BC}\) là góc nhọn, mặt phẳng \(\left( {BCC’B’} \right)\)vuông góc với \(\left( {ABC} \right)\), góc giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Thể tích khối lăng trụ \(ABC.A’B’C’\) bằng

Giải SÁCH bài tập Toán 11 – CHÂN TRỜI

Ngày 08/03/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Chân trời Tag với:gbt toan 11, GSBT TOAN 11

Giải SÁCH bài tập Toán LỚP 11 - CHÂN TRỜI MỤC LỤC  TẬP 1   TẬP 2 … [Đọc thêm...] vềGiải SÁCH bài tập Toán 11 – CHÂN TRỜI

Giải SÁCH bài tập Toán 11 – KẾT NỐI

Ngày 01/03/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Kết nối Tag với:gbt toan 11, GBT TOAN 11 KNTT, GSBT TOAN 11, GSBT TOAN 11 KN

Giải SÁCH bài tập Toán LỚP 11 - KẾT NỐI TRI THỨC MỤC LỤC TẬP 1   TẬP 2 =========****======== … [Đọc thêm...] vềGiải SÁCH bài tập Toán 11 – KẾT NỐI

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 434
  • Trang 435
  • Trang 436
  • Trang 437
  • Trang 438
  • Interim pages omitted …
  • Trang 703
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.