Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {z^2} = 4\). Điểm \(M\) thuộc đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 3 - 2t\\z = t\end{array} \right.\,\,,\,\left( {t \in \mathbb{R}} \right)\) sao cho từ \(M\) kẻ được ba tiếp tuyến là \(MA,\;MB,\;MC\) đến mặt cầu \(\left( S \right)\). Biết rằng mặt phẳng … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {y^2} + {z^2} = 4\). Điểm \(M\) thuộc đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 3 – 2t\\z = t\end{array} \right.\,\,,\,\left( {t \in \mathbb{R}} \right)\) sao cho từ \(M\) kẻ được ba tiếp tuyến là \(MA,\;MB,\;MC\) đến mặt cầu \(\left( S \right)\). Biết rằng mặt phẳng \(\left( {ABC} \right)\) vuông góc với mặt phẳng \(\left( P \right):\,\,x + y + 4z + 3 = 0\). Tính thể tích khối nón có đỉnh \(M\) và đáy là đường tròn ngoại tiếp tam giác \(ABC\).
PTMC VDC
Trong không gian với hệ trục toạ độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x – 2}}{2} = \frac{y}{{ – 1}} = \frac{z}{4}\) và mặt cầu \(\left( S \right)\,:{\,^{}}{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 2\) có tâm là \(I\). Hai mặt phẳng \(\left( P \right),\left( Q \right)\) chứa \(d\) và tiếp xúc với \(\left( S \right)\) tại hai tiếp điểm \(A,B\). Tìm toạ độ điểm \(D\) thuộc đường thẳng \(d\) sao cho thể tích khối chóp \(
D.AIB\) bằng \(\sqrt {42} \).
Trong không gian với hệ trục toạ độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x - 2}}{2} = \frac{y}{{ - 1}} = \frac{z}{4}\) và mặt cầu \(\left( S \right)\,:{\,^{}}{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 2\) có tâm là \(I\). Hai mặt phẳng \(\left( P \right),\left( Q \right)\) chứa \(d\) và tiếp xúc với \(\left( S \right)\) tại hai tiếp … [Đọc thêm...] vềTrong không gian với hệ trục toạ độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x – 2}}{2} = \frac{y}{{ – 1}} = \frac{z}{4}\) và mặt cầu \(\left( S \right)\,:{\,^{}}{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 2\) có tâm là \(I\). Hai mặt phẳng \(\left( P \right),\left( Q \right)\) chứa \(d\) và tiếp xúc với \(\left( S \right)\) tại hai tiếp điểm \(A,B\). Tìm toạ độ điểm \(D\) thuộc đường thẳng \(d\) sao cho thể tích khối chóp \(
D.AIB\) bằng \(\sqrt {42} \).
Trong không gian \(Oxyz\),cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 2z – 2 = 0\) và các điểm \(A\left( {0\,;1;\,1} \right)\), \(B\left( { – 1; – 2; – 3} \right)\),\(C\left( {1;0; – 3} \right)\). Điểm \(D\) thuộc mặt cầu \(\left( S \right)\). Thể tích tứ diện \(ABCD\) lớn nhất bằng
Trong không gian \(Oxyz\),cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 2z - 2 = 0\) và các điểm \(A\left( {0\,;1;\,1} \right)\), \(B\left( { - 1; - 2; - 3} \right)\),\(C\left( {1;0; - 3} \right)\). Điểm \(D\) thuộc mặt cầu \(\left( S \right)\). Thể tích tứ diện \(ABCD\) lớn nhất bằng A. \(\frac{{16}}{3}\). B. \(9\). C. \(\frac{8}{3}\). D. … [Đọc thêm...] vềTrong không gian \(Oxyz\),cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 2z – 2 = 0\) và các điểm \(A\left( {0\,;1;\,1} \right)\), \(B\left( { – 1; – 2; – 3} \right)\),\(C\left( {1;0; – 3} \right)\). Điểm \(D\) thuộc mặt cầu \(\left( S \right)\). Thể tích tứ diện \(ABCD\) lớn nhất bằng
Trong không gian với hệ tọa độ \(Oxyz,\)cho hai điểm \(A\left( {1; – 2;5} \right),\,B\left( {3;\, – 4;6} \right)\). Gọi \(\left( S \right)\) là mặt cầu có phương trình \({x^2} + {y^2} + {\left( {z – 8} \right)^2} = 25\). Tập hợp các điểm \(M\) thuộc mặt cầu \(\left( S \right)\) và cách đều hai điểm \(A,\,B\) là đường tròn \(\left( C \right)\). Tính chu vi của đường tròn \(\left( C \right)\).
Trong không gian với hệ tọa độ \(Oxyz,\)cho hai điểm \(A\left( {1; - 2;5} \right),\,B\left( {3;\, - 4;6} \right)\). Gọi \(\left( S \right)\) là mặt cầu có phương trình \({x^2} + {y^2} + {\left( {z - 8} \right)^2} = 25\). Tập hợp các điểm \(M\) thuộc mặt cầu \(\left( S \right)\) và cách đều hai điểm \(A,\,B\) là đường tròn \(\left( C \right)\). Tính chu vi của đường tròn … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz,\)cho hai điểm \(A\left( {1; – 2;5} \right),\,B\left( {3;\, – 4;6} \right)\). Gọi \(\left( S \right)\) là mặt cầu có phương trình \({x^2} + {y^2} + {\left( {z – 8} \right)^2} = 25\). Tập hợp các điểm \(M\) thuộc mặt cầu \(\left( S \right)\) và cách đều hai điểm \(A,\,B\) là đường tròn \(\left( C \right)\). Tính chu vi của đường tròn \(\left( C \right)\).
Trong không gian với hệ trục toạ độ \(Oxyz\), cho hai điểm \(A\left( {3;5; – 2} \right)\), \(B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x + y – 2z + 9 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm \(A\), \(B\) và tiếp xúc với \(\left( P \right)\) tại điểm \(C\). Gọi \(M\), \(m\) lần lượt là giả trị lớn nhất, nhỏ nhất của độ dài \(OC\). Giá trị \({M^2} + {m^2}\) bằng
Trong không gian với hệ trục toạ độ \(Oxyz\), cho hai điểm \(A\left( {3;5; - 2} \right)\), \(B\left( { - 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x + y - 2z + 9 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm \(A\), \(B\) và tiếp xúc với \(\left( P \right)\) tại điểm \(C\). Gọi \(M\), \(m\) lần lượt là giả trị lớn nhất, nhỏ nhất của độ dài \(OC\). Giá trị \({M^2} + … [Đọc thêm...] vềTrong không gian với hệ trục toạ độ \(Oxyz\), cho hai điểm \(A\left( {3;5; – 2} \right)\), \(B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x + y – 2z + 9 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm \(A\), \(B\) và tiếp xúc với \(\left( P \right)\) tại điểm \(C\). Gọi \(M\), \(m\) lần lượt là giả trị lớn nhất, nhỏ nhất của độ dài \(OC\). Giá trị \({M^2} + {m^2}\) bằng
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right): – 3x + 2y + 2z – 1 = 0\) và mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} – 2x – 4y – 6z + 5 = 0\). Viết phương trình mặt phẳng \(\left( P \right)\)đi qua \(M\left( {4;\,3;\,4} \right)\), vuông góc với mặt phẳng \(\left( \alpha \right)\)và tiếp xúc mặt cầu \(\left( S \right)\).
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right): - 3x + 2y + 2z - 1 = 0\) và mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 5 = 0\). Viết phương trình mặt phẳng \(\left( P \right)\)đi qua \(M\left( {4;\,3;\,4} \right)\), vuông góc với mặt phẳng \(\left( \alpha \right)\)và tiếp xúc mặt cầu \(\left( S \right)\). A. \(2x + 2y + z + 18 = … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right): – 3x + 2y + 2z – 1 = 0\) và mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} – 2x – 4y – 6z + 5 = 0\). Viết phương trình mặt phẳng \(\left( P \right)\)đi qua \(M\left( {4;\,3;\,4} \right)\), vuông góc với mặt phẳng \(\left( \alpha \right)\)và tiếp xúc mặt cầu \(\left( S \right)\).
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {y^2} + {\left( {z – 3} \right)^2} = 25\) và một điểm \(M\left( {9;\,4;\,2} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm là đường tròn \(\left( C \right)\). Tính thể tích khối nón \(\left( N \right)\)có đỉnh là \(M\)và đáy là đường tròn \(\left( C \right)\) gần nhất với đáp án nào sau đây.
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 25\) và một điểm \(M\left( {9;\,4;\,2} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm là đường tròn \(\left( C \right)\). Tính thể tích khối nón \(\left( N \right)\)có đỉnh là \(M\)và đáy … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {y^2} + {\left( {z – 3} \right)^2} = 25\) và một điểm \(M\left( {9;\,4;\,2} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm là đường tròn \(\left( C \right)\). Tính thể tích khối nón \(\left( N \right)\)có đỉnh là \(M\)và đáy là đường tròn \(\left( C \right)\) gần nhất với đáp án nào sau đây.
Trong không gian \(Oxyz\), cho mặt cầu \((S):{(x – 1)^2} + {(y + 4)^2} + {(z – 6)^2} = 45\), mặt phẳng \((P):2x + 2y – z + 3 = 0\) và đường thẳng \(d:\frac{{x – 2}}{3} = \frac{{y + 5}}{2} = z – 2\). Gọi \(\Delta \) là đường thẳng nằm trong \((P)\), vuông góc với \(d\) và cắt \((S)\) theo dây cung có độ dài lớn nhất. Hỏi \(\Delta \) đi qua điểm nào trong các điểm sau?
Trong không gian \(Oxyz\), cho mặt cầu \((S):{(x - 1)^2} + {(y + 4)^2} + {(z - 6)^2} = 45\), mặt phẳng \((P):2x + 2y - z + 3 = 0\) và đường thẳng \(d:\frac{{x - 2}}{3} = \frac{{y + 5}}{2} = z - 2\). Gọi \(\Delta \) là đường thẳng nằm trong \((P)\), vuông góc với \(d\) và cắt \((S)\) theo dây cung có độ dài lớn nhất. Hỏi \(\Delta \) đi qua điểm nào trong các điểm sau? A. … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \((S):{(x – 1)^2} + {(y + 4)^2} + {(z – 6)^2} = 45\), mặt phẳng \((P):2x + 2y – z + 3 = 0\) và đường thẳng \(d:\frac{{x – 2}}{3} = \frac{{y + 5}}{2} = z – 2\). Gọi \(\Delta \) là đường thẳng nằm trong \((P)\), vuông góc với \(d\) và cắt \((S)\) theo dây cung có độ dài lớn nhất. Hỏi \(\Delta \) đi qua điểm nào trong các điểm sau?
[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\)có phương trình\({x^2} + {y^2} + {z^2} – 2x + 4y – 2z + 2 = 0\) và đường thẳng\(d\) có phương trình \(\frac{{x – 5}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{1}\). Các mặt phẳng \(\left( \alpha \right),\;\left( \beta \right)\) chứa \(d\) tiếp xúc mặt cầu \(\left( S \right)\) tại các tiếp điểm các tiếp điểm \(D,\;E\). Khi đó độ dài đoạn thẳng \(DE\) bằng
[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\)có phương trình\({x^2} + {y^2} + {z^2} - 2x + 4y - 2z + 2 = 0\) và đường thẳng\(d\) có phương trình \(\frac{{x - 5}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{1}\). Các mặt phẳng \(\left( \alpha \right),\;\left( \beta \right)\) chứa \(d\) tiếp xúc mặt cầu \(\left( S \right)\) tại các tiếp … [Đọc thêm...] về[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\)có phương trình\({x^2} + {y^2} + {z^2} – 2x + 4y – 2z + 2 = 0\) và đường thẳng\(d\) có phương trình \(\frac{{x – 5}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{1}\). Các mặt phẳng \(\left( \alpha \right),\;\left( \beta \right)\) chứa \(d\) tiếp xúc mặt cầu \(\left( S \right)\) tại các tiếp điểm các tiếp điểm \(D,\;E\). Khi đó độ dài đoạn thẳng \(DE\) bằng
[3] Trong không gian, cho bốn mặt cầu tâm \(A,B,C,D\)có bán kính lần lượt là \(2;\,3;\,3;\,2\) (đơn vị độ dài) tiếp xúc ngoài với nhau. Mặt cầu tâm \(I\) tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng

[3] Trong không gian, cho bốn mặt cầu tâm \(A,B,C,D\)có bán kính lần lượt là \(2;\,3;\,3;\,2\) (đơn vị độ dài) tiếp xúc ngoài với nhau. Mặt cầu tâm \(I\) tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng A. \(\frac{3}{7}\). B. \(\frac{7}{{15}}\). C. \(\frac{6}{{11}}\). D. \(\frac{5}{9}\). Lời giải: Gọi \(A,B\) là tâm mặt cầu có bán kính bằng … [Đọc thêm...] về[3] Trong không gian, cho bốn mặt cầu tâm \(A,B,C,D\)có bán kính lần lượt là \(2;\,3;\,3;\,2\) (đơn vị độ dài) tiếp xúc ngoài với nhau. Mặt cầu tâm \(I\) tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng