• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

PTMC VDC

Trong không gian với hệ trục toạ độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x – 2}}{2} = \frac{y}{{ – 1}} = \frac{z}{4}\) và mặt cầu \(\left( S \right)\,:{\,^{}}{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 2\) có tâm là \(I\). Hai mặt phẳng \(\left( P \right),\left( Q \right)\) chứa \(d\) và tiếp xúc với \(\left( S \right)\) tại hai tiếp điểm \(A,B\). Tìm toạ độ điểm \(D\) thuộc đường thẳng \(d\) sao cho thể tích khối chóp \(

D.AIB\) bằng \(\sqrt {42} \).

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ trục toạ độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x - 2}}{2} = \frac{y}{{ - 1}} = \frac{z}{4}\) và mặt cầu \(\left( S \right)\,:{\,^{}}{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 2\) có tâm là \(I\). Hai mặt phẳng \(\left( P \right),\left( Q \right)\) chứa \(d\) và tiếp xúc với \(\left( S \right)\) tại hai tiếp … [Đọc thêm...] vềTrong không gian với hệ trục toạ độ \(Oxyz\), cho đường thẳng \(d:\,\frac{{x – 2}}{2} = \frac{y}{{ – 1}} = \frac{z}{4}\) và mặt cầu \(\left( S \right)\,:{\,^{}}{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 2\) có tâm là \(I\). Hai mặt phẳng \(\left( P \right),\left( Q \right)\) chứa \(d\) và tiếp xúc với \(\left( S \right)\) tại hai tiếp điểm \(A,B\). Tìm toạ độ điểm \(D\) thuộc đường thẳng \(d\) sao cho thể tích khối chóp \(

D.AIB\) bằng \(\sqrt {42} \).

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) và điểm \(A\left( {2;3;3} \right)\). Qua \(A\) kẻ các tiếp tuyến đến \(\left( S \right)\). Khi đó, tập hợp các tiếp điểm \(M\) là một đường tròn có bán kính bằng bao nhiêu?

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 2} \right)^2} = 4\) và điểm \(A\left( {2;3;3} \right)\). Qua \(A\) kẻ các tiếp tuyến đến \(\left( S \right)\). Khi đó, tập hợp các tiếp điểm \(M\) là một đường tròn có bán kính bằng bao nhiêu? A. \(\frac{{3\sqrt {69} }}{{46}}.\) B. \(\sqrt {23} … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 2} \right)^2} = 4\) và điểm \(A\left( {2;3;3} \right)\). Qua \(A\) kẻ các tiếp tuyến đến \(\left( S \right)\). Khi đó, tập hợp các tiếp điểm \(M\) là một đường tròn có bán kính bằng bao nhiêu?

Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = – 2t\\y = – 4 + 3t\\z = 1 – t\end{array} \right.\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 4x + 2y + 2z = 0\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu \(\left( S \right)\). Giá trị \(\tan \widehat {AIB}\) bằng

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = - 2t\\y = - 4 + 3t\\z = 1 - t\end{array} \right.\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 2z = 0\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu … [Đọc thêm...] vềTrong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l}x = – 2t\\y = – 4 + 3t\\z = 1 – t\end{array} \right.\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 4x + 2y + 2z = 0\). Hai mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) chứa \(d\) và cùng tiếp xúc với \(\left( S \right)\) lần lượt tại \(A,\,B\). Gọi \(I\) tà tâm mặt cầu \(\left( S \right)\). Giá trị \(\tan \widehat {AIB}\) bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S):{\left( {x – 2} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 9\) và hai điểm \(A(5;2;1),\,\,B(1;1; – 2)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = (0;1;2)\) và \(MN = 2\sqrt 5 \). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 9\) và hai điểm \(A(5;2;1),\,\,B(1;1; - 2)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = (0;1;2)\) và \(MN = 2\sqrt 5 \). Tính giá trị lớn nhất của \(\left| {AM - BN} \right|\). A. … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S):{\left( {x – 2} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 9\) và hai điểm \(A(5;2;1),\,\,B(1;1; – 2)\). \(MN\) là dây cung của mặt cầu thỏa mãn \(\overrightarrow {MN} \) cùng hướng với \(\vec u = (0;1;2)\) và \(MN = 2\sqrt 5 \). Tính giá trị lớn nhất của \(\left| {AM – BN} \right|\).

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\):\({\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; – 4} \right),B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón đỉnh là tâm của \(\left( S \right)\) và đáy là \(\left( C \right)\) có thể tích lớn nhất. Biết phương trình của \(\left( \alpha \right)\) có dạng \(ax + by – z + c = 0,\,\left( {a,b,c \in \mathbb{R}} \right)\). Giá trị của \(a – b + c\) bằng

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\):\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; - 4} \right),B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón đỉnh là tâm của … [Đọc thêm...] về

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\):\({\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z – 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; – 4} \right),B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón đỉnh là tâm của \(\left( S \right)\) và đáy là \(\left( C \right)\) có thể tích lớn nhất. Biết phương trình của \(\left( \alpha \right)\) có dạng \(ax + by – z + c = 0,\,\left( {a,b,c \in \mathbb{R}} \right)\). Giá trị của \(a – b + c\) bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, - \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, - \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau. A. … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\,\,:\,\,{x^2}\, + \,{y^2} + \,{z^2}\, – \,\,8x\, + 6y\, + \,2z\,\, + 6\, = 0\)và mặt phẳng \(\left( P \right)\,\,:\,x\, – \,2y\, = \,\,0\). Có bao nhiệu điểm \(M\)có tọa độ nguyên nằm trên \(\left( P \right)\)sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\)qua \(M\)và vuông góc với nhau.

[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 9\) và điểm \(M\left( {1\,;\,3\,;\, – 1} \right)\). Biết rằng các tiếp điểm của các tiếp tuyến kẻ từ \(M\) tới mặt cầu đã cho luôn thuộc một đường tròn \(\left( C \right)\) có tâm \(J\left( {a\,;\,b\,;\,c} \right)\). Tính \(2a + b + c\).

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và điểm \(M\left( {1\,;\,3\,;\, - 1} \right)\). Biết rằng các tiếp điểm của các tiếp tuyến kẻ từ \(M\) tới mặt cầu đã cho luôn thuộc một đường tròn \(\left( C \right)\) có tâm \(J\left( {a\,;\,b\,;\,c} … [Đọc thêm...] về[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 9\) và điểm \(M\left( {1\,;\,3\,;\, – 1} \right)\). Biết rằng các tiếp điểm của các tiếp tuyến kẻ từ \(M\) tới mặt cầu đã cho luôn thuộc một đường tròn \(\left( C \right)\) có tâm \(J\left( {a\,;\,b\,;\,c} \right)\). Tính \(2a + b + c\).

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 3} \right)^2} = 26\) và mặt phẳng \(\left( Q \right):2x + 2y – z + 5 = 0\). Có bao nhiêu điểm \(M\) thuộc trục hoành, với hoành độ là số nguyên, mà từ \(M\) kẻ được đến \(\left( S \right)\) hai tiếp tuyến cùng song song với mặt phẳng \(\left( Q \right)\)?

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 3} \right)^2} = 26\) và mặt phẳng \(\left( Q \right):2x + 2y - z + 5 = 0\). Có bao nhiêu điểm \(M\) thuộc trục hoành, với hoành độ là số nguyên, mà từ \(M\) kẻ được đến \(\left( S \right)\) hai tiếp tuyến cùng song song với mặt phẳng \(\left( Q … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 3} \right)^2} = 26\) và mặt phẳng \(\left( Q \right):2x + 2y – z + 5 = 0\). Có bao nhiêu điểm \(M\) thuộc trục hoành, với hoành độ là số nguyên, mà từ \(M\) kẻ được đến \(\left( S \right)\) hai tiếp tuyến cùng song song với mặt phẳng \(\left( Q \right)\)?

Trong không gian \(Oxyz\), cho điểm \(A\left( { – 11; – 7; – 4} \right)\) và mặt phẳng \(\left( \alpha \right):6x + 2y + 3z – 55 = 0\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( \alpha \right)\), điểm \(M\) thuộc mặt phẳng \(\left( \alpha \right)\) sao cho \(MA\) luôn tiếp xúc với mặt cầu \(\left( S \right)\) tại trung điểm \(K\) của đoạn \(MA\) và độ dài \(MH = 7\sqrt 3 \), biết mặt cầu \(\left( S \right)\) có tâm \(I\left( {a;b;c} \right)\) đi qua \(H\). Tính \(a + b + c\).

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Trong không gian \(Oxyz\), cho điểm \(A\left( { - 11; - 7; - 4} \right)\) và mặt phẳng \(\left( \alpha \right):6x + 2y + 3z - 55 = 0\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( \alpha \right)\), điểm \(M\) thuộc mặt phẳng \(\left( \alpha \right)\) sao cho \(MA\) luôn tiếp xúc với mặt cầu \(\left( S \right)\) tại trung điểm \(K\) của đoạn \(MA\) và độ … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho điểm \(A\left( { – 11; – 7; – 4} \right)\) và mặt phẳng \(\left( \alpha \right):6x + 2y + 3z – 55 = 0\). Gọi \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( \alpha \right)\), điểm \(M\) thuộc mặt phẳng \(\left( \alpha \right)\) sao cho \(MA\) luôn tiếp xúc với mặt cầu \(\left( S \right)\) tại trung điểm \(K\) của đoạn \(MA\) và độ dài \(MH = 7\sqrt 3 \), biết mặt cầu \(\left( S \right)\) có tâm \(I\left( {a;b;c} \right)\) đi qua \(H\). Tính \(a + b + c\).

Cho mặt cầu \(\left( S \right):\;{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 5\).Tìm điểm \(M\)thuộc trục hoành có hoành độ dương. Sao cho từ \(M\)kẻ các tiếp tuyến đến mặt cầu mà tập hợp các tiếp điểm tạo thành đường tròn có chu vi bằng \(\frac{{4\sqrt 5 \pi }}{3}\).

Ngày 31/05/2024 Thuộc chủ đề:_Trắc nghiệm Hình học OXYZ Tag với:PTMC VDC, PTMP VDC, Trac nghiem OXYZ VDC

Cho mặt cầu \(\left( S \right):\;{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 5\).Tìm điểm \(M\)thuộc trục hoành có hoành độ dương. Sao cho từ \(M\)kẻ các tiếp tuyến đến mặt cầu mà tập hợp các tiếp điểm tạo thành đường tròn có chu vi bằng \(\frac{{4\sqrt 5 \pi }}{3}\). A. \(M\left( {3;\;0;\;0} \right)\) B. \(M\left( {4;\;0;\;0} … [Đọc thêm...] vềCho mặt cầu \(\left( S \right):\;{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 5\).Tìm điểm \(M\)thuộc trục hoành có hoành độ dương. Sao cho từ \(M\)kẻ các tiếp tuyến đến mặt cầu mà tập hợp các tiếp điểm tạo thành đường tròn có chu vi bằng \(\frac{{4\sqrt 5 \pi }}{3}\).

  • Trang 1
  • Trang 2
  • Trang 3
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.