[Mức độ 3] Trong không gian \(Oxyz\), cho hình lập phương \(ABCD\,.\,A'B'C'D'\) tâm \(I\), có điểm \(C\left( {3\,;\, - 2\,;\, - 1} \right)\) và điểm \(A'\left( { - 1\,;\,2\,;\,3} \right)\). Gọi \(\left( S \right)\) là mặt cầu nội tiếp hình lập phương. Biết tiếp diện của \(\left( S \right)\) tại điểm \(M\) trên đoạn \(IC\) có phương trình \(\left( P \right):ax + by + cz + 6 = … [Đọc thêm...] về[Mức độ 3] Trong không gian \(Oxyz\), cho hình lập phương \(ABCD\,.\,A’B’C’D’\) tâm \(I\), có điểm \(C\left( {3\,;\, – 2\,;\, – 1} \right)\) và điểm \(A’\left( { – 1\,;\,2\,;\,3} \right)\). Gọi \(\left( S \right)\) là mặt cầu nội tiếp hình lập phương. Biết tiếp diện của \(\left( S \right)\) tại điểm \(M\) trên đoạn \(IC\) có phương trình \(\left( P \right):ax + by + cz + 6 = 0\). Tính tích \(abc\).
PTMC VDC
[Mức độ 3] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 16\) và hai điểm \(A\left( {5\,;\, – 3\,;\,3} \right)\), \(B\left( { – 2\,;\,2\,;\, – 2} \right)\). Gọi \(M\) là điểm di động trên mặt cầu \(\left( S \right)\). Gọi \(\left( P \right)\) là mặt phẳng qua hai điểm \(A\), \(B\) sao cho khoảng cách từ điểm \(M\) đến \(\left( P \right)\) là lớn nhất. Hỏi khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( P \right)\) nằm trong khoảng nào?
[Mức độ 3] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) và hai điểm \(A\left( {5\,;\, - 3\,;\,3} \right)\), \(B\left( { - 2\,;\,2\,;\, - 2} \right)\). Gọi \(M\) là điểm di động trên mặt cầu \(\left( S \right)\). Gọi \(\left( P \right)\) là mặt phẳng qua hai điểm \(A\), \(B\) … [Đọc thêm...] về[Mức độ 3] Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 16\) và hai điểm \(A\left( {5\,;\, – 3\,;\,3} \right)\), \(B\left( { – 2\,;\,2\,;\, – 2} \right)\). Gọi \(M\) là điểm di động trên mặt cầu \(\left( S \right)\). Gọi \(\left( P \right)\) là mặt phẳng qua hai điểm \(A\), \(B\) sao cho khoảng cách từ điểm \(M\) đến \(\left( P \right)\) là lớn nhất. Hỏi khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( P \right)\) nằm trong khoảng nào?
Trong hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x – 2} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 12\) và điểm \(A\left( {4\,;\,4\,;\,0} \right)\). Gọi \(B\,\left( {a\,;\,b\,;\,c} \right)\)là điểm thuộc mặt cầu \(\left( S \right)\) sao cho tam giác \(OAB\) cân tại \(B\) và diện tích tam giác \(OAB\) bằng \(4\sqrt 3 \), (với \(O\) là gốc tọa độ). Khi đó \(a + b + c\) bằng
Trong hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 2} \right)^2} = 12\) và điểm \(A\left( {4\,;\,4\,;\,0} \right)\). Gọi \(B\,\left( {a\,;\,b\,;\,c} \right)\)là điểm thuộc mặt cầu \(\left( S \right)\) sao cho tam giác \(OAB\) cân tại \(B\) và diện tích tam giác \(OAB\) bằng \(4\sqrt 3 \), (với … [Đọc thêm...] vềTrong hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,{\left( {x – 2} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 2} \right)^2} = 12\) và điểm \(A\left( {4\,;\,4\,;\,0} \right)\). Gọi \(B\,\left( {a\,;\,b\,;\,c} \right)\)là điểm thuộc mặt cầu \(\left( S \right)\) sao cho tam giác \(OAB\) cân tại \(B\) và diện tích tam giác \(OAB\) bằng \(4\sqrt 3 \), (với \(O\) là gốc tọa độ). Khi đó \(a + b + c\) bằng
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và điểm \(A\left( {2;3; – 1} \right)\). Xét các điểm \(M\) thuộc \(\left( S \right)\) sao cho đường thẳng \(AM\) tiếp xúc với \(\left( S \right)\), \(M\)luôn thuộc mặt phẳng có phương trình
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và điểm \(A\left( {2;3; - 1} \right)\). Xét các điểm \(M\) thuộc \(\left( S \right)\) sao cho đường thẳng \(AM\) tiếp xúc với \(\left( S \right)\), \(M\)luôn thuộc mặt phẳng có phương trình A. \(6x + 8y + 11 = 0\). B. \(3x + … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và điểm \(A\left( {2;3; – 1} \right)\). Xét các điểm \(M\) thuộc \(\left( S \right)\) sao cho đường thẳng \(AM\) tiếp xúc với \(\left( S \right)\), \(M\)luôn thuộc mặt phẳng có phương trình
Trong không gian \(Oxyz,\) cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 4x – 4y – 4z = 0\) và điểm \(A(4;4;0).\) Điểm \(B\) thuộc mặt cầu \((S)\) sao cho tam giác \(OAB\) cân tại \(B\) và có diện tích bằng \(8.\) Phương trình mặt phẳng qua ba điểm \(O,{\rm{ }}A,{\rm{ }}B\) là
Trong không gian \(Oxyz,\) cho mặt cầu \((S):{x^2} + {y^2} + {z^2} - 4x - 4y - 4z = 0\) và điểm \(A(4;4;0).\) Điểm \(B\) thuộc mặt cầu \((S)\) sao cho tam giác \(OAB\) cân tại \(B\) và có diện tích bằng \(8.\) Phương trình mặt phẳng qua ba điểm \(O,{\rm{ }}A,{\rm{ }}B\) là A. \(z = 0\) B. \(z - y - z = 0.\) C. \(x - y + 2z = 0.\) D. \(x - y + z = 0.\) Lời … [Đọc thêm...] vềTrong không gian \(Oxyz,\) cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 4x – 4y – 4z = 0\) và điểm \(A(4;4;0).\) Điểm \(B\) thuộc mặt cầu \((S)\) sao cho tam giác \(OAB\) cân tại \(B\) và có diện tích bằng \(8.\) Phương trình mặt phẳng qua ba điểm \(O,{\rm{ }}A,{\rm{ }}B\) là
Trong không gian với hệ tọa độ cho hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) lần lượt có phương trình là \({x^2} + {y^2} + {z^2} – 4x – 2y + 6z – 22 = 0\), \({x^2} + {y^2} + {z^2} – 8x – 4y + 2z + 5 = 0\). Xét các mặt phẳng \(\left( \alpha \right)\) thay đổi nhưng luôn tiếp xúc cả hai mặt cầu đã cho. Gọi \(A\left( {a;\,b;\,c} \right)\) là điểm mà tất cả các mặt phẳng \(\left( \alpha \right)\) đi qua. Tính giá trị biểu thức \(S = a – 2b + 3c\).
Trong không gian với hệ tọa độ cho hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) lần lượt có phương trình là \({x^2} + {y^2} + {z^2} - 4x - 2y + 6z - 22 = 0\), \({x^2} + {y^2} + {z^2} - 8x - 4y + 2z + 5 = 0\). Xét các mặt phẳng \(\left( \alpha \right)\) thay đổi nhưng luôn tiếp xúc cả hai mặt cầu đã cho. Gọi \(A\left( {a;\,b;\,c} \right)\) là điểm mà tất … [Đọc thêm...] vềTrong không gian với hệ tọa độ cho hai mặt cầu \(\left( {{S_1}} \right)\), \(\left( {{S_2}} \right)\) lần lượt có phương trình là \({x^2} + {y^2} + {z^2} – 4x – 2y + 6z – 22 = 0\), \({x^2} + {y^2} + {z^2} – 8x – 4y + 2z + 5 = 0\). Xét các mặt phẳng \(\left( \alpha \right)\) thay đổi nhưng luôn tiếp xúc cả hai mặt cầu đã cho. Gọi \(A\left( {a;\,b;\,c} \right)\) là điểm mà tất cả các mặt phẳng \(\left( \alpha \right)\) đi qua. Tính giá trị biểu thức \(S = a – 2b + 3c\).
[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) và một điểm \(M\left( {4;\, – 2;\,4} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm nằm trong mặt phẳng \(\left( \alpha \right)\). Hỏi mặt phẳng \(\left( \alpha \right)\) đi qua điểm nào dưới đây?
[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) và một điểm \(M\left( {4;\, - 2;\,4} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm nằm trong mặt phẳng \(\left( \alpha \right)\). Hỏi mặt phẳng \(\left( \alpha \right)\) … [Đọc thêm...] về[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) và một điểm \(M\left( {4;\, – 2;\,4} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm nằm trong mặt phẳng \(\left( \alpha \right)\). Hỏi mặt phẳng \(\left( \alpha \right)\) đi qua điểm nào dưới đây?
[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\)có phương trình\({x^2} + {y^2} + {z^2} – 2x + 4y – 2z + 2 = 0\) và đường thẳng\(d\) có phương trình \(\frac{{x – 5}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{1}\). Các mặt phẳng \(\left( \alpha \right),\;\left( \beta \right)\) chứa \(d\) tiếp xúc mặt cầu \(\left( S \right)\) tại các tiếp điểm các tiếp điểm \(D,\;E\). Khi đó độ dài đoạn thẳng \(DE\) bằng
[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\)có phương trình\({x^2} + {y^2} + {z^2} - 2x + 4y - 2z + 2 = 0\) và đường thẳng\(d\) có phương trình \(\frac{{x - 5}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{1}\). Các mặt phẳng \(\left( \alpha \right),\;\left( \beta \right)\) chứa \(d\) tiếp xúc mặt cầu \(\left( S \right)\) tại các tiếp … [Đọc thêm...] về[Mức độ 3] Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right)\)có phương trình\({x^2} + {y^2} + {z^2} – 2x + 4y – 2z + 2 = 0\) và đường thẳng\(d\) có phương trình \(\frac{{x – 5}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z – 2}}{1}\). Các mặt phẳng \(\left( \alpha \right),\;\left( \beta \right)\) chứa \(d\) tiếp xúc mặt cầu \(\left( S \right)\) tại các tiếp điểm các tiếp điểm \(D,\;E\). Khi đó độ dài đoạn thẳng \(DE\) bằng
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {y^2} + {\left( {z – 3} \right)^2} = 25\) và một điểm \(M\left( {9;\,4;\,2} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm là đường tròn \(\left( C \right)\). Tính thể tích khối nón \(\left( N \right)\)có đỉnh là \(M\)và đáy là đường tròn \(\left( C \right)\) gần nhất với đáp án nào sau đây.
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 25\) và một điểm \(M\left( {9;\,4;\,2} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm là đường tròn \(\left( C \right)\). Tính thể tích khối nón \(\left( N \right)\)có đỉnh là \(M\)và đáy … [Đọc thêm...] vềTrong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {y^2} + {\left( {z – 3} \right)^2} = 25\) và một điểm \(M\left( {9;\,4;\,2} \right)\). Từ \(M\) kẻ được vô số các tiếp tuyến tới \(\left( S \right)\), biết tập hợp các tiếp điểm là đường tròn \(\left( C \right)\). Tính thể tích khối nón \(\left( N \right)\)có đỉnh là \(M\)và đáy là đường tròn \(\left( C \right)\) gần nhất với đáp án nào sau đây.
Trong không gian với hệ trục toạ độ \(Oxyz\), cho hai điểm \(A\left( {3;5; – 2} \right)\), \(B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x + y – 2z + 9 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm \(A\), \(B\) và tiếp xúc với \(\left( P \right)\) tại điểm \(C\). Gọi \(M\), \(m\) lần lượt là giả trị lớn nhất, nhỏ nhất của độ dài \(OC\). Giá trị \({M^2} + {m^2}\) bằng
Trong không gian với hệ trục toạ độ \(Oxyz\), cho hai điểm \(A\left( {3;5; - 2} \right)\), \(B\left( { - 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x + y - 2z + 9 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm \(A\), \(B\) và tiếp xúc với \(\left( P \right)\) tại điểm \(C\). Gọi \(M\), \(m\) lần lượt là giả trị lớn nhất, nhỏ nhất của độ dài \(OC\). Giá trị \({M^2} + … [Đọc thêm...] vềTrong không gian với hệ trục toạ độ \(Oxyz\), cho hai điểm \(A\left( {3;5; – 2} \right)\), \(B\left( { – 1;3;2} \right)\) và mặt phẳng \(\left( P \right):2x + y – 2z + 9 = 0\). Mặt cầu \(\left( S \right)\) đi qua hai điểm \(A\), \(B\) và tiếp xúc với \(\left( P \right)\) tại điểm \(C\). Gọi \(M\), \(m\) lần lượt là giả trị lớn nhất, nhỏ nhất của độ dài \(OC\). Giá trị \({M^2} + {m^2}\) bằng