Cho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.A. $2 \ln 2$.B. $\ln 5$.C. $3 \ln 2$.D. $2 \ln 3$. … [Đọc thêm...] vềCho hàm số $f(x)$ có nguyên hàm $F(x)$ và thỏa mãn $x f^{\prime}(x)=f(x)-x f^{2}(x)$ với mọi $x \in(0 ;+\infty)$. Biết $f(1)=1$ và $F(1)=\ln 2$. Tính $F(2)$.
Kết quả tìm kiếm cho: ty so
Nhà trường dự định làm một vườn hoa dạng hình elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là \(8{\rm{ m}}\) và \({\rm{4 m}}\); \({F_1}\), \({F_2}\) lần lượt là hai tiêu điểm của elip. Phần \(A\), \(B\) dùng để trồng hoa, phần \(C\), \(D\) dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là \(270.000\) đ và \(140.{\rm{000}}\) đ. Tính tổng số tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn).

Nhà trường dự định làm một vườn hoa dạng hình elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là \(8{\rm{ m}}\) và \({\rm{4 m}}\); \({F_1}\), \({F_2}\) lần lượt là hai tiêu điểm của elip. Phần \(A\), \(B\) dùng để trồng hoa, phần \(C\), \(D\) dùng để trồng cỏ. … [Đọc thêm...] vềNhà trường dự định làm một vườn hoa dạng hình elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là \(8{\rm{ m}}\) và \({\rm{4 m}}\); \({F_1}\), \({F_2}\) lần lượt là hai tiêu điểm của elip. Phần \(A\), \(B\) dùng để trồng hoa, phần \(C\), \(D\) dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là \(270.000\) đ và \(140.{\rm{000}}\) đ. Tính tổng số tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn).
Một cái cổng hình Parabol như hình vẽ sau. Chiều cao \(GH = 4m\), chiều rộng \(AB = 4m\), \(AC = BD = 0,9m\). Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1200000\) đồng\(/{m^2}\), còn các phần để trắng làm xiên hoa có giá là \(900000\) đồng\(/{m^2}\). Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?

Một cái cổng hình Parabol như hình vẽ sau. Chiều cao \(GH = 4m\), chiều rộng \(AB = 4m\), \(AC = BD = 0,9m\). Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1200000\) đồng\(/{m^2}\), còn các phần để trắng làm xiên hoa có giá là \(900000\) đồng\(/{m^2}\). Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?
A. … [Đọc thêm...] vềMột cái cổng hình Parabol như hình vẽ sau. Chiều cao \(GH = 4m\), chiều rộng \(AB = 4m\), \(AC = BD = 0,9m\). Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1200000\) đồng\(/{m^2}\), còn các phần để trắng làm xiên hoa có giá là \(900000\) đồng\(/{m^2}\). Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?
Cho hàm số \(f(x) = a{x^4} – {x^3} + 2x + 2\) và hàm số \(g(x) = b{x^3} + c{x^2} + 2\), có đồ thị như hình vẽ bên. Gọi \({S_1};{S_2}\) là diện tích các hình phẳng gạch chéo trong hình vẽ, biết \({S_2} = \frac{{791}}{{640}}\). Khi đó \({S_1}\) bằng

Cho hàm số \(f(x) = a{x^4} - {x^3} + 2x + 2\) và hàm số \(g(x) = b{x^3} + c{x^2} + 2\), có đồ thị như hình vẽ bên. Gọi \({S_1};{S_2}\) là diện tích các hình phẳng gạch chéo trong hình vẽ, biết \({S_2} = \frac{{791}}{{640}}\). Khi đó \({S_1}\) bằng
A. \(\frac{{231}}{{640}}\).
B. \(\frac{{271}}{{320}}\).
C. \(\frac{{571}}{{640}}\).
D. … [Đọc thêm...] vềCho hàm số \(f(x) = a{x^4} – {x^3} + 2x + 2\) và hàm số \(g(x) = b{x^3} + c{x^2} + 2\), có đồ thị như hình vẽ bên. Gọi \({S_1};{S_2}\) là diện tích các hình phẳng gạch chéo trong hình vẽ, biết \({S_2} = \frac{{791}}{{640}}\). Khi đó \({S_1}\) bằng
Hướng tới kỉ niệm \(50\) năm thành lập trường THPT X. Học sinh lớp 12T thiết kế bồn hoa gồm hai Elip bằng nhau có độ dài trục lớn bằng \(8m\) và độ dài trục nhỏ bằng \(4m\) đặt chồng lên nhau sao cho trục lớn của Elip này và trục nhỏ của Elip kia cùng nằm trên một đường thẳng (như hình vẽ).

Phần diện tích (tô màu) nằm trong đường tròn đi qua \(4\) giao điểm của hai Elip dùng để trồng cỏ, phần diện tích bốn cánh hoa (không tô màu) được giới hạn bởi đường tròn và đường Elip dùng để trồng hoa. Biết kinh phí để trồng hoa là \(300.000\)đồng\(/1{m^2}\), kinh phí để trồng cỏ là \(200.000\)đồng\(/1{m^2}\). Tổng số tiền dùng để trồng hoa và trồng cỏ cho bồn hoa gần với số nào nhất trong các số sau:
Hướng tới kỉ niệm \(50\) năm thành lập trường THPT X. Học sinh lớp 12T thiết kế bồn hoa gồm hai Elip bằng nhau có độ dài trục lớn bằng \(8m\) và độ dài trục nhỏ bằng \(4m\) đặt chồng lên nhau sao cho trục lớn của Elip này và trục nhỏ của Elip kia cùng nằm trên một đường thẳng (như hình vẽ).
Phần diện tích (tô màu) nằm trong đường tròn đi qua \(4\) giao điểm của hai Elip … [Đọc thêm...] vềHướng tới kỉ niệm \(50\) năm thành lập trường THPT X. Học sinh lớp 12T thiết kế bồn hoa gồm hai Elip bằng nhau có độ dài trục lớn bằng \(8m\) và độ dài trục nhỏ bằng \(4m\) đặt chồng lên nhau sao cho trục lớn của Elip này và trục nhỏ của Elip kia cùng nằm trên một đường thẳng (như hình vẽ).
Với mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f’\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng
Với mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f'\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng A. \(15\). B. \(20\). C. \(25\). D. \(5\). Lời giải: Vì với mọi \(x \in … [Đọc thêm...] vềVới mọi \(x \in \left[ {1; + \infty } \right)\), hàm số \(f\left( x \right)\) xác định, liên tục, nhận giá trị dương đồng thời thỏa mãn \(3{x^4}f\left( x \right) + {f^3}\left( x \right) = 2{x^5}f’\left( x \right)\) và \(f\left( 1 \right) = 1\). Giá trị của \(f\left( 5 \right)\) bằng
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + … + F\left( {2023} \right)\) bằng
Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + ... + F\left( {2023} \right)\) bằng A. \(2022\frac{1}{{2024}}\). B. … [Đọc thêm...] vềCho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\) thỏa mãn \(F\left( 1 \right) = \frac{1}{2}\). Giá trị của biểu thức \(S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + … + F\left( {2023} \right)\) bằng
Cho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 – 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a – 3b + 2c\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 - 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a - … [Đọc thêm...] vềCho hàm số \(y = f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( {{x^2} + 1} \right) + \frac{{f\left( {\sqrt x } \right)}}{{4x\sqrt x }} = \frac{{2x + 1}}{{2x}}\ln \left( {x + 1} \right)\). Biết \(\int\limits_1^{17} {f\left( x \right){\rm{d}}x = a\ln 5 – 2\ln b + c} \) với \(a,{\rm{ }}b,{\rm{ }}c \in \mathbb{R}\). Tính \(T = a – 3b + 2c\).
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \(f\left( 0 \right) = 1\), \(f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\) và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f’\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = {\left[ {f(x)} \right]^2}\) và đường thẳng \(x = 4\) bằng
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \[f\left( 0 \right) = 1\], \[f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\] và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f'\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = … [Đọc thêm...] vềCho hàm số \(f\left( x \right)\) có đạo hàm trên \(\left[ {0; + \infty } \right)\) thỏa mãn \(f\left( 0 \right) = 1\), \(f\left( x \right) > 0,\forall x \in \left[ {0; + \infty } \right)\) và\(\frac{1}{{f\left( x \right)}} + \frac{1}{{2f’\left( x \right) + 1}} = 1,\forall x \in \left[ {0; + \infty } \right)\). Diện tích hình phẳng giới hạn bởi các đường \(y = f(x)\) , \(y = {\left[ {f(x)} \right]^2}\) và đường thẳng \(x = 4\) bằng
Có bao nhiêu giá trị nguyên của tham số \(a \in \left( { – 10; + \infty } \right)\) để hàm số \(y = \left| {{x^3} + \left( {a + 2} \right)x + 9 – {a^2}} \right|\) đồng biến trên khoảng \(\left( {0;1} \right)\) ?
Có bao nhiêu giá trị nguyên của tham số \(a \in \left( { - 10; + \infty } \right)\) để hàm số \(y = \left| {{x^3} + \left( {a + 2} \right)x + 9 - {a^2}} \right|\) đồng biến trên khoảng \(\left( {0;1} \right)\) ? A. 12. B. 11. C. 6. D. 5. Lời giải: Chọn B Xét \(f\left( x \right) = {x^3} + … [Đọc thêm...] vềCó bao nhiêu giá trị nguyên của tham số \(a \in \left( { – 10; + \infty } \right)\) để hàm số \(y = \left| {{x^3} + \left( {a + 2} \right)x + 9 – {a^2}} \right|\) đồng biến trên khoảng \(\left( {0;1} \right)\) ?