• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Kết quả tìm kiếm cho: ty so

Đề: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$ Lời giải Ta có:    $\left| {\sum\limits_{i = 1}^n {\sin 2{x_i}} } \right| = 2\left| {\sum\limits_{i = 1}^n {\sin {x_i}\cos {x_i}} } \right| \le 2{\left( … [Đọc thêm...] vềĐề: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$

Đề: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $y=x+\sqrt{4-x^2}$ với $-2\leq x\leq 2$.

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Ứng dụng hàm số vào giải toán

Đề bài: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $y=x+\sqrt{4-x^2}$ với $-2\leq x\leq 2$. Lời giải Ta có: $y'=1-\frac{x}{\sqrt{4-x^2}}=\frac{\sqrt{4-x^2}-x}{\sqrt{4-x^2}}$Khi $-2\leq x\leq 0$ thì $\sqrt{4-x^2}-x>0$. Khi $0\leq x\leq 2$, ta có: $(4-x^2)-x^2=4-2x^2$.Do đó ta có: $y'>0 $ khi $0\leq x\leq \sqrt{2}$ và $y'Tóm lại ta có bảng biến thiên sau:Vậy $\max y … [Đọc thêm...] vềĐề: Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $y=x+\sqrt{4-x^2}$ với $-2\leq x\leq 2$.

Đề: Cho hàm số  $y = \frac{2x – 3}{x – 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất.

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Đề bài: Cho hàm số  $y = \frac{2x - 3}{x - 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất. Lời giải Ta có:  $ M\left( {{x_0};\frac{{2{x_0} - 3}}{{{x_0} - 2}}} … [Đọc thêm...] vềĐề: Cho hàm số  $y = \frac{2x – 3}{x – 2}$ .Cho $M$ là điểm bất kì trên $(C)$. Tiếp tuyến của $(C)$ tại $M$ cắt các đường tiệm cận của $(C)$ tại $A$ và  $B$. Gọi $I$  là giao điểm của các đường tiệm cận. Tìm toạ độ điểm $M$ sao cho đường tròn ngoại tiếp tam giác $IAB$ có diện tích nhỏ nhất.

Đề: Chứng minh rằng nếu $n$ là một số tự nhiên chẵn, và $a$ là một số lớn hơn, thì phương trình$( {n + 1}){x^{n + 2}} – 3( {n + 2} ){x^{n + 1}} + {a^{n + 2}} = 0$ không có nghiệm

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Ứng dụng hàm số vào giải toán

Đề bài: Chứng minh rằng nếu $n$ là một số tự nhiên chẵn, và $a$ là một số lớn hơn, thì phương trình$( {n + 1}){x^{n + 2}} - 3( {n + 2} ){x^{n + 1}} + {a^{n + 2}} = 0$ không có nghiệm Lời giải Đặt $f\left( x \right) = \left( {n + 1} \right){x^{n + 2}} - 3\left( {n + 2} \right){x^{n + 1}} + {a^{n + 2}}$ ta có:${f^'}\left( x \right) = \left( {n + 1} \right)\left( {n + 2} … [Đọc thêm...] vềĐề: Chứng minh rằng nếu $n$ là một số tự nhiên chẵn, và $a$ là một số lớn hơn, thì phương trình$( {n + 1}){x^{n + 2}} – 3( {n + 2} ){x^{n + 1}} + {a^{n + 2}} = 0$ không có nghiệm

Đề: Cho $p, q$ là các số tự nhiên lớn hơn 1. Tìm giá trị lớn nhất của hàm số                       $y=cos^pxsin^qx  (0\leq x\leq \frac{\pi}{2} )$

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Ứng dụng hàm số vào giải toán

Đề bài: Cho $p, q$ là các số tự nhiên lớn hơn 1. Tìm giá trị lớn nhất của hàm số                       $y=cos^pxsin^qx  (0\leq x\leq \frac{\pi}{2} )$ Lời giải Ta có:    ${y^2} = c{\rm{o}}{{\rm{s}}^{2p}}x{\sin ^{2q}}x = {(1 - {\sin ^2}x)^p}{\sin ^{2q}}x$Đặt $t = {\sin ^2}x,{\rm{ t}} \in \left[ {0{\rm{ ; 1}}} \right]$ ta được    ${y^2} = f(t) = {t^q}{(1 - t)^p},{\rm{ t}} \in … [Đọc thêm...] vềĐề: Cho $p, q$ là các số tự nhiên lớn hơn 1. Tìm giá trị lớn nhất của hàm số                       $y=cos^pxsin^qx  (0\leq x\leq \frac{\pi}{2} )$

Đề: Cho hàm số:  $y = {x^2}(m – x) – m$                    (1)a) Chứng minh rằng đường thẳng $y = kx + k + 1$ luôn luôn cắt đường cong (1) tại một điểm cố định.b) Tìm $k$ theo $m$ để đường thẳng cắt đường cong (1) tại ba điểm phân biệt.c) Tìm $m$ để hàm số (1) đồng biến trong khoảng $1 < x < 2$

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tương giao của 2 đồ thị

Đề bài: Cho hàm số:  $y = {x^2}(m - x) - m$                    (1)a) Chứng minh rằng đường thẳng $y = kx + k + 1$ luôn luôn cắt đường cong (1) tại một điểm cố định.b) Tìm $k$ theo $m$ để đường thẳng cắt đường cong (1) tại ba điểm phân biệt.c) Tìm $m$ để hàm số (1) đồng biến trong khoảng $1 < x < 2$ Lời giải a) Dễ nhận thấy rằng $A( - 1{{ ; 1)}}$ là điểm cố định mà đường … [Đọc thêm...] vềĐề: Cho hàm số:  $y = {x^2}(m – x) – m$                    (1)a) Chứng minh rằng đường thẳng $y = kx + k + 1$ luôn luôn cắt đường cong (1) tại một điểm cố định.b) Tìm $k$ theo $m$ để đường thẳng cắt đường cong (1) tại ba điểm phân biệt.c) Tìm $m$ để hàm số (1) đồng biến trong khoảng $1 < x < 2$

Đề: Tìm giá trị nhỏ nhất của hàm số:  $y = {(\cos x + \sin x)^3} + \frac{1}{{{{\cos }^2}x{{\sin }^2}x}}$

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Đề bài: Tìm giá trị nhỏ nhất của hàm số:  $y = {(\cos x + \sin x)^3} + \frac{1}{{{{\cos }^2}x{{\sin }^2}x}}$ Lời giải Ta có: $y = {{\rm{[}}\sqrt {\rm{2}} {\rm{sin(x + }}\pi {\rm{/4)]}}^{\rm{3}}} + \frac{4}{{{{\sin }^2}2x}} = 2\sqrt 2 {\sin ^3}(x + \pi /4) + \frac{4}{{{{\sin }^2}2x}} \ge - 2\sqrt 2  + 4$,Dấu = đạt được, chẳng hạn khi $x = - 3\pi /4$.Vậy $\min y = 4 - 2\sqrt … [Đọc thêm...] vềĐề: Tìm giá trị nhỏ nhất của hàm số:  $y = {(\cos x + \sin x)^3} + \frac{1}{{{{\cos }^2}x{{\sin }^2}x}}$

Đề: Xem hàm số: $y = \frac{{{x^2} + m({m^2} – 1)x – {m^4} + 1}}{{x – m}}$a) Chứng minh rằng với mọi giá trị $m$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng trên mặt phẳng tọa độ tồn tại một điểm duy nhất với tính chất: nó là điểm cực đại cả đồ thị ứng với một giá trị nào đó của $m$, và nó là điểm cực tiểu của đồ thị ứng với một giá trị khác của $m$

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Cực trị của hàm số

Đề bài: Xem hàm số: $y = \frac{{{x^2} + m({m^2} - 1)x - {m^4} + 1}}{{x - m}}$a) Chứng minh rằng với mọi giá trị $m$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng trên mặt phẳng tọa độ tồn tại một điểm duy nhất với tính chất: nó là điểm cực đại cả đồ thị ứng với một giá trị nào đó của $m$, và nó là điểm cực tiểu của đồ thị ứng với một giá trị khác của $m$ Lời giải … [Đọc thêm...] vềĐề: Xem hàm số: $y = \frac{{{x^2} + m({m^2} – 1)x – {m^4} + 1}}{{x – m}}$a) Chứng minh rằng với mọi giá trị $m$, hàm số luôn có cực đại và cực tiểu.b) Chứng minh rằng trên mặt phẳng tọa độ tồn tại một điểm duy nhất với tính chất: nó là điểm cực đại cả đồ thị ứng với một giá trị nào đó của $m$, và nó là điểm cực tiểu của đồ thị ứng với một giá trị khác của $m$

Đề: Cho hàm số    $y = \frac{{{x^2} + 2x + 2}}{{x + 1}}$1)    Khảo sát sự biến thiên và vẽ đồ thị hàm số.2)    $A$ là điểm trên đồ thị có hoành độ $a$. Viết phương trình tiếp tuyến $\left( {{t_a}} \right)$ của đồ thị tại điểm $A$.3)    Xác định $a$ để $\left( {{t_a}} \right)$ đi qua điểm $(1;0)$. Chứng tỏ rằng có hai giá trị của $a$ thỏa mãn điều kiện của bài toán, và hai tiếp tuyến tương ứng là vuông góc với nhau

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Khảo sát và vẽ đồ thị hàm số

Đề bài: Cho hàm số    $y = \frac{{{x^2} + 2x + 2}}{{x + 1}}$1)    Khảo sát sự biến thiên và vẽ đồ thị hàm số.2)    $A$ là điểm trên đồ thị có hoành độ $a$. Viết phương trình tiếp tuyến $\left( {{t_a}} \right)$ của đồ thị tại điểm $A$.3)    Xác định $a$ để $\left( {{t_a}} \right)$ đi qua điểm $(1;0)$. Chứng tỏ rằng có hai giá trị của $a$ thỏa mãn điều kiện của bài toán, và hai … [Đọc thêm...] vềĐề: Cho hàm số    $y = \frac{{{x^2} + 2x + 2}}{{x + 1}}$1)    Khảo sát sự biến thiên và vẽ đồ thị hàm số.2)    $A$ là điểm trên đồ thị có hoành độ $a$. Viết phương trình tiếp tuyến $\left( {{t_a}} \right)$ của đồ thị tại điểm $A$.3)    Xác định $a$ để $\left( {{t_a}} \right)$ đi qua điểm $(1;0)$. Chứng tỏ rằng có hai giá trị của $a$ thỏa mãn điều kiện của bài toán, và hai tiếp tuyến tương ứng là vuông góc với nhau

Đề: Cho hàm số $y =  – (m^2 + 5m)x^3 + 6mx^2 + 6x – 6$. Gọi $C_m$ là đồ thị của nó. Tìm tất cả các điểm cố định trong mặt phẳng tọa độ mà $C_m$ luôn đi qua với mọi giá trị $m$. Tiếp tuyến của $C_m$ tại mỗi điểm đó có cố định hay không khi $m$ thay đổi, tại sao?

Ngày 14/03/2020 Thuộc chủ đề:Bài tập Hàm số Tag với:Tiếp tuyến của đồ thị

Đề bài: Cho hàm số $y =  - (m^2 + 5m)x^3 + 6mx^2 + 6x - 6$. Gọi $C_m$ là đồ thị của nó. Tìm tất cả các điểm cố định trong mặt phẳng tọa độ mà $C_m$ luôn đi qua với mọi giá trị $m$. Tiếp tuyến của $C_m$ tại mỗi điểm đó có cố định hay không khi $m$ thay đổi, tại sao? Lời giải $ y=-({m^2} + 5m){x^3} + 6m{x^2} + 6x - 6 $$\Leftrightarrow {x^3}{m^2} + (5{x^3} - 6{x^2})m + y - 6x … [Đọc thêm...] vềĐề: Cho hàm số $y =  – (m^2 + 5m)x^3 + 6mx^2 + 6x – 6$. Gọi $C_m$ là đồ thị của nó. Tìm tất cả các điểm cố định trong mặt phẳng tọa độ mà $C_m$ luôn đi qua với mọi giá trị $m$. Tiếp tuyến của $C_m$ tại mỗi điểm đó có cố định hay không khi $m$ thay đổi, tại sao?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 248
  • Trang 249
  • Trang 250
  • Trang 251
  • Trang 252
  • Interim pages omitted …
  • Trang 703
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.