Câu hỏi: Cho hàm số \(y = f(x)\) xác định trên các khoảng\((0; + \infty )\)và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Khẳng định nào sau đây là đúng? A. Đường thẳng y=2 là tiệm cận đứng của đồ thị hàm số \(y = f(x)\) B. Đường thẳng x=2 là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) C. Đường … [Đọc thêm...] vềĐề: Cho hàm số \(y = f(x)\) xác định trên các khoảng\((0; + \infty )\)và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Khẳng định nào sau đây là đúng?
Kết quả tìm kiếm cho: ty so
Đề: Cho hàm số \(y = f(x)\) xác định trên các khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau?
Câu hỏi: Cho hàm số \(y = f(x)\) xác định trên các khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau? A. Đường thẳng y=2 là tiệm cận đứng của đồ thị hàm số y=f(x). B. Đường thẳng y=2 là tiệm cận ngang của đồ thị hàm … [Đọc thêm...] vềĐề: Cho hàm số \(y = f(x)\) xác định trên các khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau?
Đề: Cho hàm số \(y = f\left( x \right)\) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\) và \(\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) = – 1\). Khẳng định nào sau đây là đúng?
Câu hỏi: Cho hàm số \(y = f\left( x \right)\) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 1\). Khẳng định nào sau đây là đúng? A. Đồ thị hàm số đã cho không có tiệm cận ngang. B. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng … [Đọc thêm...] vềĐề: Cho hàm số \(y = f\left( x \right)\) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\) và \(\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) = – 1\). Khẳng định nào sau đây là đúng?
Đề: Cho hàm số \(y = f(x)\) xác định trên các khoảng\((0; + \infty )\)và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Khẳng định nào sau đây là đúng?
Câu hỏi: Cho hàm số \(y = f(x)\) xác định trên các khoảng\((0; + \infty )\)và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Khẳng định nào sau đây là đúng? A. Đường thẳng y=2 là tiệm cận đứng của đồ thị hàm số \(y = f(x)\) B. Đường thẳng x=2 là tiệm cận ngang của đồ thị hàm số \(y = f(x)\) C. Đường … [Đọc thêm...] vềĐề: Cho hàm số \(y = f(x)\) xác định trên các khoảng\((0; + \infty )\)và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Khẳng định nào sau đây là đúng?
Đề: Cho hàm số \(y = f(x)\) xác định trên các khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau?
Câu hỏi: Cho hàm số \(y = f(x)\) xác định trên các khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau? A. Đường thẳng y=2 là tiệm cận đứng của đồ thị hàm số y=f(x). B. Đường thẳng y=2 là tiệm cận ngang của đồ thị hàm … [Đọc thêm...] vềĐề: Cho hàm số \(y = f(x)\) xác định trên các khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to +\infty } f(x) = 2\). Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau?
Đề: Cho hàm số \(y = \frac{1}{3}{x^3} – \frac{1}{2}\left( {m + 1} \right){x^2} + m{\rm{x}} + 5.\) Tìm m để hàm số đồng biến trên \(\left( {2; + \infty } \right).\)
Câu hỏi: Cho hàm số \(y = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 1} \right){x^2} + m{\rm{x}} + 5.\) Tìm m để hàm số đồng biến trên \(\left( {2; + \infty } \right).\) A.\(1 \le m \le 2.\) B.\(m \le 1.\) C.\(m \le 2.\) D.\(m \ge 2.\) Các bạn hãy chọn trả lời đúng trước khi xem … [Đọc thêm...] vềĐề: Cho hàm số \(y = \frac{1}{3}{x^3} – \frac{1}{2}\left( {m + 1} \right){x^2} + m{\rm{x}} + 5.\) Tìm m để hàm số đồng biến trên \(\left( {2; + \infty } \right).\)
Đề: Tìm tập hợp tất cả các giá trị của m để hàm số \(y = \frac{{mx – 4}}{{x – m}}\) nghịch biến trên \(\left( {0; + \infty } \right).\)
Câu hỏi: Tìm tập hợp tất cả các giá trị của m để hàm số \(y = \frac{{mx - 4}}{{x - m}}\) nghịch biến trên \(\left( {0; + \infty } \right).\) A.\(m \in \left( { - \infty ; - 2} \right)\) B.\(m \in \left( { - 2;0} \right)\) C.\(m \in \left( {2; + \infty } \right)\) D.\(m \in \left( { - … [Đọc thêm...] vềĐề: Tìm tập hợp tất cả các giá trị của m để hàm số \(y = \frac{{mx – 4}}{{x – m}}\) nghịch biến trên \(\left( {0; + \infty } \right).\)
Đề: Hàm số nào sau đây đồng biến trên \(\left( { – \infty ; + \infty } \right)?\)
Câu hỏi: Hàm số nào sau đây đồng biến trên \(\left( { - \infty ; + \infty } \right)?\) A.\(y = {x^4} + {x^2} + 2.\) B.\(y = {x^2} + x + 2.\) C.\(y = {x^3} - x + 1.\) D.\(y = {x^3} + x - 2.\) Các bạn hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. … [Đọc thêm...] vềĐề: Hàm số nào sau đây đồng biến trên \(\left( { – \infty ; + \infty } \right)?\)
Đề: Hàm số nào trong các hàm số sau nghịch biến trên khoảng \(\left( {0; + \infty } \right)?\)
Câu hỏi: Hàm số nào trong các hàm số sau nghịch biến trên khoảng \(\left( {0; + \infty } \right)?\) A.\(y = - {x^2} + x.\) B.\(y = {\log _{\frac{1}{2}}}\left( {x + 1} \right).\) C.\(y = \frac{2}{{x - 1}}.\) D.\(y = - \frac{1}{x}.\) Các bạn hãy chọn trả lời đúng trước khi xem đáp án và … [Đọc thêm...] vềĐề: Hàm số nào trong các hàm số sau nghịch biến trên khoảng \(\left( {0; + \infty } \right)?\)
Đề: Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \frac{{x + m}}{{\sqrt {{x^2} + 1} }}\) đồng biến trong khoảng \(\left( {0; + \infty } \right)\).
Câu hỏi: Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \frac{{x + m}}{{\sqrt {{x^2} + 1} }}\) đồng biến trong khoảng \(\left( {0; + \infty } \right)\). A.\(m \le 0\) B.\(m \le 1\) C.\(m \le - 1\) D.\(m \le 2\) Các bạn hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. … [Đọc thêm...] vềĐề: Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \frac{{x + m}}{{\sqrt {{x^2} + 1} }}\) đồng biến trong khoảng \(\left( {0; + \infty } \right)\).