DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH) Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong trong hình dưới. Biết hàm số \(f(x)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2k\). Gọi … [Đọc thêm...] vềCho hàm số bậc ba \(y = f(x)\) có đồ thị là đường cong trong hình dưới. Biết hàm số \(f(x)\) đạt cực trị tại hai điểm \({x_1},{x_2}\) thỏa mãn \({x_2} = {x_1} + 4\) và \(f\left( {{x_1}} \right) + f\left( {{x_2}} \right) = 2k\). Gọi \({S_1}\) và \({S_2}\) là diện tích của haihình phẳng được cho trong hình dưới
Kết quả tìm kiếm cho: 0a
Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong \(\left( C \right)\) như hình vẽ bên dưới. Biết hàm số \(f\left( x \right)\) đạt cực trị tại ba điểm \({x_1}\), \({x_2}\), \(\,{x_3}\) thỏa mãn \({x_3} = {x_1} + 4\), \(f({x_1}) + f({x_3}) + \frac{{18}}{7}f({x_2}) = 0\) và \(\left( C \right)\) nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Gọi \({S_1}\) và \({S_2}\) lần lượt là diện tích của hình phẳng được gạch chéo và hình phẳng được tô màu xanh. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng
DẠNG TOÁN 48 : ỨNG DỤNG TÍCH PHÂN (TÍNH DIỆN TÍCH HÌNH PHẲNG, TỈ SỐ DIỆN TÍCH) Theo đề tham khảo Toán 2021 ĐỀ BÀI: Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong \(\left( C \right)\) như hình vẽ bên dưới. Biết hàm số \(f\left( x \right)\) đạt cực trị tại ba điểm \({x_1}\), \({x_2}\), \(\,{x_3}\) thỏa mãn \({x_3} = {x_1} + 4\), … [Đọc thêm...] vềCho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong \(\left( C \right)\) như hình vẽ bên dưới. Biết hàm số \(f\left( x \right)\) đạt cực trị tại ba điểm \({x_1}\), \({x_2}\), \(\,{x_3}\) thỏa mãn \({x_3} = {x_1} + 4\), \(f({x_1}) + f({x_3}) + \frac{{18}}{7}f({x_2}) = 0\) và \(\left( C \right)\) nhận đường thẳng \(x = {x_2}\) làm trục đối xứng. Gọi \({S_1}\) và \({S_2}\) lần lượt là diện tích của hình phẳng được gạch chéo và hình phẳng được tô màu xanh. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng
ĐỀ-23-PHÁT-TRIỂN-ĐỀ-MINH-HỌA-THI-TN-THPT-2020-2021-GV.docx
NW358-ĐỀ-23-PHÁT-TRIỂN-ĐỀ-MINH-HỌA-THI-TN-THPT-2020-2021-GV.docx – có lời giải - file word --------------- Bộ đề thi thử THPT QG môn Toán năm 2021 Để có thêm nguồn tư liệu phong phú trong quá trình ôn luyện cho kì thi THPT QG sắp tới, Booktoan.com chia sẻ đến các em Bộ đề thi tốt nghiệp THPT môn Toán năm 2021. Đề có đáp án chi tiết giúp các em đối chiếu, tham … [Đọc thêm...] vềĐỀ-23-PHÁT-TRIỂN-ĐỀ-MINH-HỌA-THI-TN-THPT-2020-2021-GV.docx
1. Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(I\left( {2;1;1} \right)\) và bán kính bằng \(4\), cho mặt cầu \(\left( {{S_2}} \right)\) có tâm \(J\left( {2;1;5} \right)\) và bán kính bằng \(2\). Gọi \(\left( P \right)\) là mặt phẳng tiếp xúc với hai mặt cầu \(\left( {{S_1}} \right);\left( {{S_2}} \right)\). Đặt \(M,m\) lần lượt là giá trịlớn nhất và giá trị nhỏ nhất của khoảng cách từ \(O\) đến \(\left( P \right)\). Giá trị \(M + m\) bằng
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== 1. Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(I\left( {2;1;1} \right)\) và bán kính bằng \(4\), cho mặt cầu \(\left( {{S_2}} \right)\) có tâm \(J\left( {2;1;5} \right)\) và … [Đọc thêm...] về1. Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( {{S_1}} \right)\) có tâm \(I\left( {2;1;1} \right)\) và bán kính bằng \(4\), cho mặt cầu \(\left( {{S_2}} \right)\) có tâm \(J\left( {2;1;5} \right)\) và bán kính bằng \(2\). Gọi \(\left( P \right)\) là mặt phẳng tiếp xúc với hai mặt cầu \(\left( {{S_1}} \right);\left( {{S_2}} \right)\). Đặt \(M,m\) lần lượt là giá trịlớn nhất và giá trị nhỏ nhất của khoảng cách từ \(O\) đến \(\left( P \right)\). Giá trị \(M + m\) bằng
Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 2} \right)^2} + {\left( {y – 3} \right)^2} + {\left( {z – 4} \right)^2} = 2\) và điểm \(A\left( {1;2;3} \right)\). Xét điểm \(M\) thuộc mặt cầu \(\left( S \right)\)sao cho đường thẳng\(AM\) tiếp xúc với \(\left( S \right)\), \(M\)luôn thuộc mặt phẳng có phương trình là
DẠNG TOÁN 50: PHƯƠNG TRÌNH MẶT PHẲNG (Tìm hệ số của phương trình mặt phẳng thỏa mãn các điều kiện cho trước lồng ghép với khối tròn xoay) =============== Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 2\) và điểm \(A\left( {1;2;3} \right)\). Xét điểm \(M\) thuộc mặt cầu \(\left( … [Đọc thêm...] vềTrong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x – 2} \right)^2} + {\left( {y – 3} \right)^2} + {\left( {z – 4} \right)^2} = 2\) và điểm \(A\left( {1;2;3} \right)\). Xét điểm \(M\) thuộc mặt cầu \(\left( S \right)\)sao cho đường thẳng\(AM\) tiếp xúc với \(\left( S \right)\), \(M\)luôn thuộc mặt phẳng có phương trình là
Đề bài: Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, tâm $O$.Gọi $M,N$ lần lượt là trung điểm của các cạnh $SA,BC$.Biết rằng góc giữa $MN$ và $(ABCD)$ bằng $60^0$$a.$ Tính $MN,SO$$b.$ Tính góc giữa $MN$ và mặt phẳng $(SBD)$
Đề bài: Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, tâm $O$.Gọi $M,N$ lần lượt là trung điểm của các cạnh $SA,BC$.Biết rằng góc giữa $MN$ và $(ABCD)$ bằng $60^0$$a.$ Tính $MN,SO$$b.$ Tính góc giữa $MN$ và mặt phẳng $(SBD)$ Lời giải $a.$ Gọi $H$ là trung điểm của $OA$ suy ra:$MH//SO\Rightarrow MH\bot (ABCD)$suy ra $NH$ là hình chiếu vuông góc của $MN$ … [Đọc thêm...] vềĐề bài: Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, tâm $O$.Gọi $M,N$ lần lượt là trung điểm của các cạnh $SA,BC$.Biết rằng góc giữa $MN$ và $(ABCD)$ bằng $60^0$$a.$ Tính $MN,SO$$b.$ Tính góc giữa $MN$ và mặt phẳng $(SBD)$
Đề bài: Cho $S.ABCD$ có đáy là hình chữ nhất với $AB=a, AD=2a$. Cạnh $SA$ vuông góc với đáy, còn cạnh $SB$ tạo với mặt phẳng đáy góc $60^0$. Trên cạnh $SA$ lấy điểm $M$ sao cho $AM=\frac{a\sqrt{3}}{3}$. mặt phẳng $(BCM)$ cắt $SD$ tại điểm $N $ . Tính thể tích khối chóp $S.BCNM$.
Đề bài: Cho $S.ABCD$ có đáy là hình chữ nhất với $AB=a, AD=2a$. Cạnh $SA$ vuông góc với đáy, còn cạnh $SB$ tạo với mặt phẳng đáy góc $60^0$. Trên cạnh $SA$ lấy điểm $M$ sao cho $AM=\frac{a\sqrt{3}}{3}$. mặt phẳng $(BCM)$ cắt $SD$ tại điểm $N $ . Tính thể tích khối chóp $S.BCNM$. Lời giải cần giải chi tiết ( đáp số $\frac{10a^3\sqrt{3}}{27}$). … [Đọc thêm...] vềĐề bài: Cho $S.ABCD$ có đáy là hình chữ nhất với $AB=a, AD=2a$. Cạnh $SA$ vuông góc với đáy, còn cạnh $SB$ tạo với mặt phẳng đáy góc $60^0$. Trên cạnh $SA$ lấy điểm $M$ sao cho $AM=\frac{a\sqrt{3}}{3}$. mặt phẳng $(BCM)$ cắt $SD$ tại điểm $N $ . Tính thể tích khối chóp $S.BCNM$.
[VDC] Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $f\left(2^{3 x^{4}-4 x^{3}+2}\right)+1=0$ có bao nhiêu nghiệm?
Câu 42. TRƯỜNG THPT PHAN BỘI CHÂU-KHÁNH HOÀ Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $f\left(2^{3 x^{4}-4 x^{3}+2}\right)+1=0$ có bao nhiêu nghiệm? =========== Lời giải == (Thầy Toàn Hoàng) == (Cô Lưu Thêm) ==== … [Đọc thêm...] về[VDC] Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ và có bảng biến thiên như sau: Hỏi phương trình $f\left(2^{3 x^{4}-4 x^{3}+2}\right)+1=0$ có bao nhiêu nghiệm?
Một số thủ thuật tính tích phân hàm ẩn – tự luận và Casio
Một số thủ thuật tính tích phân hàm ẩn - tự luận và Casio ======== của KÊNH PPT - TIVI =============== Link download pdf … [Đọc thêm...] vềMột số thủ thuật tính tích phân hàm ẩn – tự luận và Casio
10 ĐỀ THI THỬ TỐT NGHIỆP môn Toán 2020
10 ĐỀ THI THỬ TỐT NGHIỆP môn Toán 2020 - sưu tầm từ các trường trong cả nước. ============ ★ 10 ĐỀ THI THỬ TỐT NGHIỆP (#GIẢI_CHI_TIẾT) ★ 1. Đề khảo sát chất lượng của Sở GD & ĐT Vĩnh Phúc → Link tải: https://bit.ly/2YTgYon 2. Đề thi thử Đại Học lần 1 trường THPT Thái Phúc - Thái Bình → Link tải: https://bit.ly/2AN3ti5 3. Đề thi thử tốt nghiệp lần 2 trường … [Đọc thêm...] về10 ĐỀ THI THỬ TỐT NGHIỆP môn Toán 2020