• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Chứng minh rằng:$1\sqrt{C^{1}_{n}}+2\sqrt{C^{2}_{n}}+…+n\sqrt{C^{n}_{n}}

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Đề bài: Chứng minh rằng:$1\sqrt{C^{1}_{n}}+2\sqrt{C^{2}_{n}}+…+n\sqrt{C^{n}_{n}}

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng:$1\sqrt{C^{1}_{n}}+2\sqrt{C^{2}_{n}}+…+n\sqrt{C^{n}_{n}}
Lời giải

Theo Bunhiacopski:
$1\sqrt{C^{1}_{n}}+2\sqrt{C^{2}_{n}}+…+n\sqrt{C^{n}_{n}} \leq \sqrt{1^{2}+2^{2}+…+n^{2}}.\sqrt{C^{1}_{n}+C^{2}_{n}+…+C^{n}_{n}}$
Vì:$\begin{cases}1^{2}+2^{2}+…+n^{2}=\frac{n(n+1)(2n+1)}{6}\\ C^{1}_{n}+C^{2}_{n}+…+C^{n}_{n}=2^{n}-1\end{cases}$
$\Rightarrow $ vế trái BĐT $\leq \sqrt{\frac{(2^{n}-1)n(n+1)(2n+1)}{6}}$
Để chứng minh BĐT đã cho,ta sẽ chứng minh:
$2^{n-1}.n^{3}>\frac{(2^{n}-1)n(n+1)(2n+1)}{6}$
$\Leftrightarrow 3.2^{n}.n^{2}>(n+1)(2n+1)(2^{n}-1) (1)$
Thật vậy:
Vì: $n>3 \Rightarrow n^{2}>3n$
 $\Rightarrow n^{2}\geq 3n+1$ (vì $n\in Z$)
 $\Rightarrow 3n^{2}\geq 2n^{2}+3n+1 = (n+1)(2n+1)$
 $\Rightarrow 3.2^{n}.n^{2}\geq 2^{n}(n+1)(2n+1)>(n+1)(2n+1)(2^{n}-1)$
 $\Rightarrow 3.2^{n}.n^{2}>(n+1)(2n+1)(2^{n}-1)$
$\Rightarrow $ đúng.
$\Rightarrow$ (ĐPCM)

=========
Chuyên mục: Các dạng bất đẳng thức khác

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Các dạng bất đẳng thức khác

Bài liên quan:

  1. Đề bài: Giả sử $a\cos2x + b\cos x + 1 \ge 0$ đúng với $\forall x$. Chứng minh $|a|+|b| \le 2$
  2. Đề bài: Cho $x,y$ là các số thực,chứng minh rằng :$A=\sqrt{x^{2}+4y^{2}+6x+9}+\sqrt{x^{2}+4y^{2}-2x+10}\geq 5$
  3. Đề bài: ho tứ diện $SABC$ có các góc phẳng ở đỉnh $S$  vuông. Chứng minh rằng  : $\sqrt{3}S_{ABC} \geq S_{SBC}+S_{SAB}+S_{SAC}$
  4. Đề bài: chứng minh với mọi số nguyên dương n:a) \(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{2n}\geq \frac{1}{2}\)b)\(\frac{1}{1\times 3}+\frac{1}{1\times 3\times 5}+…+\frac{1}{1\times 3\times 5…\left ( 2n+1 \right )}
  5. Đề bài: Với $a,b,c>0$ chứng minh rằng:   $\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\leq \frac{1}{abc}$
  6. Đề bài: Cho $ x,y,z\geq 0$ chứng minh $\sqrt{x^{2}+xy+y^{2}}+\sqrt{y^{2}+yz+z^{2}}+\sqrt{z^{2}+zx+x^{2}}\geq \left ( x+y+z \right )\sqrt{3} $
  7. Đề bài: Chứng minh rằng với mọi số nguyên dương $n$ ta có:                   $(1+\frac{1}{n})^n
  8. Đề bài: Chứng minh rằng với mọi số $a,b,c\in [0,1]$ ta luôn có:  $(1+a+b+c)^{2}\geq 4(a^2+b^2+c^2)$.
  9. Đề bài: Cho 3 số thực $x,y,z$ thỏa mãn $\begin{cases}x+y+z=5 \\ xy+yz+zx=8 \end{cases}$ Chứng minh rằng : $1 \leq x,y,z \leq \frac{7}{3}$
  10. Đề bài: Chứng minh rằng:$1+\frac{1}{2}C^{1}_{n}+\frac{1}{3}C^{2}_{n}+…+\frac{1}{n+1}C^{n}_{n}
  11. Đề bài: Cho  $\begin{cases}x,y,z,t \in (-\frac{\pi}{2};\frac{\pi}{2}) \\\sin x+\sin y+\sin z+\sin t= 1\\\cos 2x+\cos 2y+\cos 2z+\cos 2t \geq \frac{10}{3}\end{cases}$Chứng minh rằng:  $ x,y,z,t \in [0;\frac{\pi}{6}]$
  12. Đề bài: Cho $f,g:[0,1] \to  [0,1] $ liên tục.Chứng minh:$(\int\limits_{0}^{1}f(x).g(x)dx)^{2}\leq (\int\limits_{0}^{1}f(x)dx).(\int\limits_{0}^{1}g(x)dx)$
  13. Đề bài: Gọi \( x_{1},x_{2} \) là các nghiệm của phương trình  \(x^{2}+2kx+a^{2}=0   (a\neq 0) \)Định k để \( \left(\frac{x_{1}}{x_{2}}\right)^{2}+\left(\frac{x_{2}}{x_{1}}\right)^{2}\geq5 \)
  14. Đề bài: Cho $a,b,c\in (0,1)$, chứng minh rằng ít nhất một trong cách bất đẳng thức sau là sai:                   $a(1-b)>\frac{1}{4},b(1-c)>\frac{1}{4},c(1-a)>\frac{1}{4}$.
  15. Đề bài: Chứng minh rằng:   $(x^2+3)(y^2+3)(z^2+3)\geq \frac{4}{27}(3xy+3yz+3zx)^2    (1) $ trong đó $x,y,z$ là các số thực.

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.