• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

adsense
Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

Bat dang thuc

Lời giải

Đề bài:
Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$
Lời giải

Xét $n=1:$
BĐT trở thành : $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq\frac{3}{2}$

$VT=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ca+cb}\geq\frac{(a+b+c)^2}{2(ab+bc+ca)}
$( áp dụng BĐT Bunhiacopxki)

adsense

Mà $
ab+bc+ca\leq \frac{(a+b+c)^2}{3}$

$\Rightarrow
VT\geq\frac{3}{2}$ (dpcm)

Xét $n \geq 2$
Xét $3$ dãy số:
$\frac{a}{\sqrt[n]{b+c}},\sqrt[n]{b+c},\underbrace {1,1,…,1}_{n-2 số};$
$\frac{b}{\sqrt[n]{c+a}},\sqrt[n]{c+a},\underbrace {1,1,…,1}_{n-2 số};$
$\frac{c}{\sqrt[n]{a+b}},\sqrt[n]{a+b},\underbrace {1,1,…,1}_{n-2 số}$
Áp dụng BĐT Bunhiacopski(mở rộng):
$(\frac{a}{\sqrt[n]{b+c}}.\sqrt[n]{b+c}.1.1..1+\frac{b}{\sqrt[n]{c+a}}.\sqrt[n]{c+a}.1.1..1+\frac{c}{\sqrt[n]{a+b}}.\sqrt[n]{a+b}.1.1..1)$
$\leq (\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b})(b+c+c+a+a+b).\underbrace {(1+1+1)+…+(1+1+1)}_{n-2 thừa số}$
$\Rightarrow (a+b+c)^{n} \leq (\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b})2(a+b+c).3^{n-2}$
$\Rightarrow \frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq  \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$
Dấu “=” xảy ra $\Leftrightarrow a=b=c$

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Biện luận theo tham số $a$ về số nghiệm của phương trình :$\sqrt {2 – x^2} {sinx} + \sqrt {2 + x^2} \cos x = \left| {a + 1} \right| + \left| {a – 1} \right|$
  2. Đề bài: Cho: $36x^{2}+16y^{2}=9$.Chứng minh rằng:$\frac{15}{4}\leq y-2x+5 \leq \frac{25}{4}$
  3. Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.
  4. Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$
  5. Đề bài:   Tìm giá trị lớn nhất của hàm số $y=\sqrt{x-2}+\sqrt{4-x}$. Sử dụng kết quả tìm được để giải phương trình :           $\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11$
  6. Đề bài: Cho các số thực $x,y\geq 1$ chứng minh rằng:     $x\sqrt{y-1}+y\sqrt{x-1}\leq xy$
  7. Đề bài:  Cho $a_1,a_2,…a_n,b_1,b_2,…,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)…(a_n+b_n)} \geq \sqrt[n]{a_1a_2…a_n}+\sqrt[n]{b_1b_2…b_3}$
  8. Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$
  9. Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$
  10. Đề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  + \gamma  = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức:  $g = \sqrt {1 + \tan\alpha \tan\beta }  + \sqrt {1 + \tan\beta \tan\gamma }  + \sqrt {1 + \tan\gamma \tan\alpha } $
  11. Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
  12. Đề bài: Cho $a
  13. Đề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $
  14. Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$
  15. Đề bài: Cho ba số dương $x,y,z$ thoả mãn : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$. Chứng minh rằng: $\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1.$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.