• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Đề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $

Đăng ngày: 11/07/2021 Biên tập: admin Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

adsense
Đề bài: $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $

Bat dang thuc

Lời giải

Đề bài:
$1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $
Lời giải

adsense

$1$. $\sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x = \frac{1}{{\cos x}} \Leftrightarrow
\sqrt 3 {\mathop{\rm t}\nolimits} {\rm{anx}} + 1 = \frac{1}{{c{\rm{o}}{{\rm{s}}^2}x}}$
$\begin{array}{l}
 \Leftrightarrow \sqrt 3 {\mathop{\rm t}\nolimits} {\rm{anx}} + 1 = 1 + {\tan ^2}x\\
 \Leftrightarrow \left[ \begin{array}{l}
{\mathop{\rm t}\nolimits} {\rm{anx}} = 0\\
{\mathop{\rm t}\nolimits} {\rm{anx}} = \sqrt 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \frac{\pi }{3} + k\pi
\end{array} \right.(k \in Z)
\end{array}$
$2$. Theo bất đẳng thức Bunhiacopxki:
$\begin{array}{l}
{y^2} = {\left( {{\mathop{\rm s}\nolimits} {\rm{inx}}\sqrt {\cos x}  + \cos x\sqrt
{{\mathop{\rm s}\nolimits} {\rm{inx}}} } \right)^2} \le \left( {{{\sin }^2}x + {{\cos }^2}x}
\right)\left( {\cos x + {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)\\
 = \sqrt 2 c{\rm{os}}\left( {x – \frac{\pi }{4}} \right) \le \sqrt 2 \\
 \Rightarrow y \le \sqrt[4]{2}
\end{array}$
Mặt khác khi x = $\frac{\pi }{4}$ thì sinx = cosx = $\frac{1}{{\sqrt 2 }}$
$ \Rightarrow y = 2.\frac{1}{{\sqrt 2 }}.\sqrt {\frac{1}{{\sqrt 2 }}}  = \sqrt[4]{2}$
Do đó $max  y = \sqrt[4]{2}$

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Biện luận theo tham số $a$ về số nghiệm của phương trình :$\sqrt {2 – x^2} {sinx} + \sqrt {2 + x^2} \cos x = \left| {a + 1} \right| + \left| {a – 1} \right|$
  2. Đề bài:   Tìm giá trị lớn nhất của hàm số $y=\sqrt{x-2}+\sqrt{4-x}$. Sử dụng kết quả tìm được để giải phương trình :           $\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11$
  3. Đề bài: Cho các số thực $x,y\geq 1$ chứng minh rằng:     $x\sqrt{y-1}+y\sqrt{x-1}\leq xy$
  4. Đề bài: Cho $n$ là một số tự nhiên và $a \in [ 0; n ]$. Tìm giá trị lớn nhất của biểu thức                           $| {\sum\limits_{i = 1}^n {\sin 2x_i} }|$, biết rằng $\sum\limits_{i = 1}^n {\sin^2}{x_i}  = a$
  5. Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$
  6. Đề bài: Cho $a,b,c$ là $3$ cạnh $\triangle ABC,S$ là diện tích.Nếu  $p,q,r>0$ thì: $\frac{p}{q+r}a^{2}+\frac{q}{r+p}b^{2}+\frac{r}{p+q}c^{2} \geq 2\sqrt{3}S$
  7. Đề bài:  Cho $a_1,a_2,…a_n,b_1,b_2,…,b_n$ là các số dương. Chứng minh      $\sqrt[n]{(a_1+b_1)(a_2+b_2)…(a_n+b_n)} \geq \sqrt[n]{a_1a_2…a_n}+\sqrt[n]{b_1b_2…b_3}$
  8. Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
  9. Đề bài: Cho $a
  10. Đề bài: $\alpha ,\beta , \gamma $  là 3 góc dương thỏa mãn điều kiện $\alpha  + \beta  + \gamma  = \frac{\pi }{2}$Tìm giá trị lớn nhất của biểu thức:  $g = \sqrt {1 + \tan\alpha \tan\beta }  + \sqrt {1 + \tan\beta \tan\gamma }  + \sqrt {1 + \tan\gamma \tan\alpha } $
  11. Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$
  12. Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$
  13. Đề bài:  Cho phương trình $\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}=m                              (1)$Tìm $m$ để phương trình có nghiệm duy nhất.
  14. Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng:  $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} .  (1)$
  15. Đề bài: Cho ba số dương $x,y,z$ thoả mãn : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$. Chứng minh rằng: $\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1.$

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.