• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Phương trình và bất phương trình Logarit / Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ {0;2022} \right]\) để bất phương trình \(\left[ {\left( {m – 1} \right){4^x} – \frac{2}{{{4^x}}} + 2m + 1} \right]\left( { – x + {4^{1 – x}}} \right) \le 0\) nghiệm đúng với mọi \(x\) thuộc \(\left[ {0;1} \right)\)? 

Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ {0;2022} \right]\) để bất phương trình \(\left[ {\left( {m – 1} \right){4^x} – \frac{2}{{{4^x}}} + 2m + 1} \right]\left( { – x + {4^{1 – x}}} \right) \le 0\) nghiệm đúng với mọi \(x\) thuộc \(\left[ {0;1} \right)\)? 

Ngày 25/06/2021 Thuộc chủ đề:Trắc nghiệm Phương trình và bất phương trình Logarit Tag với:Logarit nang cao, PT Mu nang cao, TN THPT 2021, Tuong tu cau 40 de toan minh hoa

DẠNG TOÁN 40 BẤT PHƯƠNG TRÌNH MŨ LOGARIT VẬN DỤNG – phát triển theo đề tham khảo Toán 2021
  Theo đề tham khảo Toán 2021 của Bộ GD&ĐT
ĐỀ BÀI:

Có bao nhiêu giá trị nguyên của \(m\) thuộc đoạn \(\left[ {0;2022} \right]\) để bất phương trình \(\left[ {\left( {m – 1} \right){4^x} – \frac{2}{{{4^x}}} + 2m + 1} \right]\left( { – x + {4^{1 – x}}} \right) \le 0\) nghiệm đúng với mọi \(x\) thuộc \(\left[ {0;1} \right)\)? 

A. \(1011\) . 

B. \(2021\) . 

C. \(2022\) . 

D. \(1\) .

LỜI GIẢI CHI TIẾT

Xét hàm số: \(f\left( x \right) =  – x + {4^{1 – x}} \Rightarrow f’\left( x \right) =  – 1 – {4^{1 – x}}.\ln 4 < 0\,\,\,\,\,\forall x \in \mathbb{R}\). 

Do đó: \(\forall x \in \left[ {0\,;1} \right)\) \( \Rightarrow f\left( 0 \right) \ge f\left( x \right) > f\left( 1 \right)\) hay \(4 \ge  – x + {4^{1 – x}} > 0\). 

Bất phương trình đã cho tương đương với: \(\left( {m – 1} \right){4^x} – \frac{2}{{{4^x}}} + 2m + 1 \le 0\,,\,\,\forall x \in \left[ {0\,;1} \right)\). 

Biến đổi BPT về dạng \(m \le \frac{{{4^{2x}} – {4^x} + 2}}{{{4^x}\left( {{4^x} + 2} \right)}}\,,\,\,\,\forall x \in \left[ {0\,;1} \right)\,\,\,\,\,\left( 1 \right)\). 

Đặt \(t = {4^x}\). Với \(x \in \left[ {0\,;1} \right)\) \( \Rightarrow t \in \left[ {1\,;4} \right)\).

Xét hàm số \(g\left( t \right) = \frac{{{t^2} – t + 2}}{{{t^2} + 2t}}\), với \(t \in \left[ {1\,;4} \right)\)\( \Rightarrow g’\left( t \right) = \frac{{3{t^2} – 4t – 4}}{{{{\left( {{t^2} + 2t} \right)}^2}}}\). 

Cho \(g’\left( t \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 2\\t =  – \frac{2}{3} \notin \left[ {1\,;4} \right)\end{array} \right.\).

Ta có bảng biến thiên sau:

<p>Có bao nhiêu giá trị nguyên của (m) thuộc đoạn (left[ {0;2022} right]) để bất phương trình (left[ {left( {m - 1} right){4^x} - frac{2}{{{4^x}}} + 2m + 1} right]left( { - x + {4^{1 - x}}} right) le 0) nghiệm đúng với mọi (x) thuộc (left[ {0;1} right))? </p> 1

Vậy \(\left( 1 \right) \Leftrightarrow m \le \frac{1}{2}\). Vì \(m\) thuộc đoạn \(\left[ {0;2022} \right]\) nên có giá trị \(m = 0\) thỏa mãn.

 

Bài liên quan:

  1. Tìm tất cả các giá trị của tham số m để phương trình \({\left( {7 – 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} – 1}}\) có 4 nghiệm
  2. Có bao nhiêu số nguyên $x$ thỏa mãn $\log_{3} \frac{\left(x^{2}-4 x\right)^{2}}{4096}<\log_{2} \frac{x^{2}-4 x}{27}$ ?
  3. Có bao nhiêu cặp số nguyên $(x ; y)$ thỏa mãn \(\log {2}\left(x^{2}+y^{2}+4 x\right)+\log {3}\left(x^{2}+y^{2}\right) \leq \log {2} x+\log {3}\left(15 x^{2}+15 y^{2}+48 x\right) ?\)
  4. Có bao nhiêu số nguyên \(x\), \(x \in \left[ { – 10;10} \right]\) thỏa mãn \({3.3^x} + 2x + 1 + \cos 2y = {3^{{{\sin }^2}y}}\)?
  5. Có bao nhiêu cặp số nguyên \(\left( {x\,;\,y} \right)\) thỏa mãn \(1 \le x \le 2022\) và \(x + {x^2} – {25^y} = {5^y}\).
  6. Tính tổng bình phương tất cả các nghiệm của phương trình phương trình \({5^{{x^2} – 2}} = {5^{{x^4} – {x^2} – 1}} + {\left( {{x^2} – 1} \right)^2}\).
  7. Tìm điều kiện của x để bất phương trình mũ logarit đúng với y thoả mãn điều kiện – file word
  8. 39 câu trắc nghiệm VDC Mũ – Logarit
  9. Cắt hình trụ \((T)\) bởi mặt phẳng song song với trục và cách trục một khoảng bằng \(2a\) , ta được thiết diện là một hình vuông có diện tích bẳng \(16{a^2}\) . Diện tích xung quanh của \((T)\) bằng

  10. Cho khối lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng \(2a\) , góc giữa hai mặt phẳng \(\left( {A’BC} \right)\) và \(\left( {ABC} \right)\) bằng
  11. Trong không gian \(Oxyz\) cho điểm \(A\left( {1;1;1} \right)\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{y}{2} = \frac{{z + 1}}{1}\) . Đường thẳng đi qua \(A\) , cắt trục \(Oy\) và vuông góc với \(d\) có phương trình là

  12. Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2}\left( {a,b,c \in \mathbb{R}} \right).\) Hàm số \(y = f’\left( x \right)\) có đồ thị như trong hình bên. Số nghiệm thực phân biệt của phương trình \(2f\left( x \right) + 3 = 0\)

  13. Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) – {{\log }_2}\left( {x + 21} \right)} \right]\left( {16 – {2^{x – 1}}} \right) \ge 0\) ?

  14. Cho hàm số \(f\left( x \right) = {x^4} – 10{x^3} + 24{x^2} + \left( {4 – m} \right)x\) , với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(g\left( x \right) = f\left( {\left| x \right|} \right)\) có đúng \(7\) điểm cực trị.

  15. Cho hai hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + x\) và \(g(x) = m{x^3} + n{x^2} – 2x\) ; với \(a,b,c,m,n \in \mathbb{R}\) . Biết hàm số \(y = f(x) – g(x)\) có ba điểm cực trị là \( – 1,2\) và 3. Diện tích hình phẳng giới hạn bởi hai đương \(y = f'(x)\) và \(y = g'(x)\) bằng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.