• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Trắc nghiệm Tiệm cận / Cho hàm số $y = f(x)$ có đồ thị như hình bên dưới. Khi đó tiệm cận đứng của đồ thị hàm số là

Cho hàm số $y = f(x)$ có đồ thị như hình bên dưới. Khi đó tiệm cận đứng của đồ thị hàm số là

Ngày 16/11/2025 Thuộc chủ đề:Trắc nghiệm Tiệm cận Tag với:Đường tiệm cận của đồ thị

Bài toán gốc

Cho hàm số $y = f(x)$ có đồ thị như hình bên dưới. Khi đó tiệm cận đứng của đồ thị hàm số là

de thi toan online

A. $y = – \dfrac{x}{2} – \dfrac{1}{4}$.

B. $x = -1$.

C. $x = – \dfrac{3}{4}$.

D. $y = -4x + 2$.

Lời giải: Dựa vào đồ thị hàm số ta thấy tiệm cận đứng của đồ thị hàm số là $y = – \dfrac{3}{4}$

Phân tích và Phương pháp giải

Đây là dạng bài toán nhận dạng các đường tiệm cận của đồ thị hàm số thông qua việc quan sát hình vẽ. Tiệm cận đứng (TCD) là đường thẳng đứng có phương trình $x=a$ mà tại đó hàm số không xác định và $\lim_{x \to a^{\pm}} f(x) = \pm \infty$. Trong bài toán gốc, mặc dù lời giải đưa ra có vẻ bị nhầm lẫn giữa $x$ và $y$ (TCD phải có dạng $x=a$), phương pháp giải vẫn là xác định đường thẳng đứng mà đồ thị tiến sát.

Bài toán tương tự

Cho hàm số $y = f(x)$ có đồ thị như hình bên dưới (Giả sử đồ thị là hàm phân thức có hai nhánh). Quan sát đồ thị, nếu đường cong tiến sát vô hạn đến đường thẳng $x = 3$. Khi đó tiệm cận đứng của đồ thị hàm số là:
A. $y = 3$.
B. $x = 3$.
C. $x = 1$.
D. $y = -2$.

Đáp án đúng: B. $x = 3$.
Lời giải ngắn gọn: Dựa vào đồ thị hàm số, ta thấy rằng khi $x$ tiến dần về $3$ (cả bên trái và bên phải), giá trị của hàm số $f(x)$ tiến tới vô cùng (dương vô cùng hoặc âm vô cùng). Do đó, đường thẳng $x = 3$ là tiệm cận đứng của đồ thị hàm số.

Bài liên quan:

  1. Tiệm cận xiên của đồ thị hàm số $y=\dfrac{-x^4-3x^3-x^2+5x+3}{-3x^3+3x^2+5x-1}$ là đường thẳng có phương trình
  2. Biết tiệm cận xiên của đồ thị hàm số $y=\dfrac{-x^2-3x-4}{(-4m-3)x+1}$ là đường thẳng song song với đường thẳng có phương trình $y=\dfrac{1}{4}x+\dfrac{7}{8}$
  3. Biết tiệm cận xiên của đồ thị hàm số $y=\dfrac{-2x^4+5x^3-x^2-4x+2}{x^3-2x^2-3x-2}$ là đường thẳng có phương trình $y=(m-1)x-n+4$
  4. Biết tiệm cận xiên của đồ thị hàm số $y=\dfrac{-2x^2-x+2}{(-2m-4)x+4}$ là đường thẳng vuông góc với đường thẳng có phương trình $y=2x-6$
  5. Biết tâm đối xứng của đồ thị hàm số $y=\dfrac{-x^2-x+4}{-x+m-3}$ là điểm $M\left(-4;-7\right)$. Tính $m$.
  6. Cho hàm số $y=f(x)$ có bảng biến thiên như hình dưới đây đồ thị hàm số sẽ có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
  7. Tiệm cận xiên của đồ thị hàm số $y=\dfrac{2x^3+4x^2-2x-2}{-x^2+2x+5}$ là đường thẳng có phương trình $y=ax+b$. Tính $ab$.
  8. Đồ thị hàm số $y=\dfrac{-1-\sqrt{-5x}}{4x^2-4}$ có bao nhiêu tiệm cận?
  9. Biết tiệm cận xiên của đồ thị hàm số $y=\dfrac{3x^2+5x+5}{x-3}$ là đường thẳng có phương trình $y=ax+b$. Tính $ab$.
  10. Cho hàm số $y=f(x)$ có bảng biến thiên như hình dưới đây đồ thị hàm số sẽ có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
  11. Đồ thị hàm số $y=\dfrac{\sqrt{2x+2}}{x^2-2x-3}$ có bao nhiêu tiệm cận?
  12. Biết tiệm cận xiên của đồ thị hàm số $y=\dfrac{4x^2+3x-3}{-3x+4m-4}$ là đường thẳng có phương trình $y=-\dfrac{4}{3}x+\dfrac{1}{3}$
  13. Biết tiệm cận xiên của đồ thị hàm số $y=\dfrac{2x^3-2x^2+4x-3}{x^2+4x+4}$ là đường thẳng có phương trình $y=(-m+1)x-n+1$
  14. Biết tiệm cận xiên của đồ thị hàm số $y=\dfrac{-x^2-x+5}{2x-4m-1}$ là đường thẳng qua điểm $M\left(-3;0\right)$
  15. Đồ thị hàm số $y=\dfrac{x^2+7x+12}{2x^2-8x+8}$ có bao nhiêu tiệm cận?

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.