• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Cho hàm số \(f\left( x \right) = a.{x^4} + b.{x^2} + c\) có đồ thị như sau:

Số nghiệm thuộc đoạn \(\left[ { – \pi \,;\,\frac{\pi }{2}} \right]\) của phương trình \(f\left( {f\left( {{\rm{cos}}x} \right) + 1} \right) = 0\) là

Đăng ngày: 23/09/2021 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Sự tương giao đồ thị hàm số Tag với:Tìm m để phương trình có nghiệm VDC, Tuong giao ham hop

adsense
Câu hỏi: Cho hàm số \(f\left( x \right) = a.{x^4} + b.{x^2} + c\) có đồ thị như sau:
Cho hàm số (fleft( x right) = a.{x^4} + b.{x^2} + c) có đồ thị như sau:</p> <!-- wp:image -->
<figure class="wp-block-image"><img src="https://lh4.googleusercontent.com/J1au1aH7dB8UfI_-KbZqdBc9LOnaGd7Zxu_c0cZnPVd7SoubeP3kya2jDVB6eiN_J7yDg5MeIVV6nTQw8SxUL7APHjBuO4dKpyn26uzaB-SG3DhQF0Z9yo9rmMk_yGcHz4pbvh0=s0" alt=""/></figure>
<!-- /wp:image --> <p>Số nghiệm thuộc đoạn (left[ { - pi ,;,frac{pi }{2}} right]) của phương trình (fleft( {fleft( {{rm{cos}}x} right) + 1} right) = 0) là</p> 1

Số nghiệm thuộc đoạn \(\left[ { – \pi \,;\,\frac{\pi }{2}} \right]\) của phương trình \(f\left( {f\left( {{\rm{cos}}x} \right) + 1} \right) = 0\) là

A. \(0.\)

B. \(3.\)

C. \(2.\)

D. \(1.\)

LỜI GIẢI CHI TIẾT

adsense

Đặt \(t = \cos x,\,\,t \in \left[ { – 1;1} \right]\,\,\,\left( {do\,\,x \in \left[ { – \pi;\frac{\pi }{2}} \right]} \right)\) thì PT \(f\left( {f\left( {{\rm{cos}}x} \right) + 1} \right) = 0\) trở thành

\(f\left( {f\left( t \right) + 1} \right) = 0 \Leftrightarrow f\left( t \right) + 1 =\pm a,\,\,a \in \left( {1;2} \right) \Leftrightarrow \left[ \begin{array}{l}f\left( t \right) = a – 1 \in \left( {0;1} \right)\\f\left( t \right) =- a – 1 \in \left( { – 3; – 2} \right)\end{array} \right.\)

Từ đồ thị hàm số \(f\left( x \right) = a.{x^4} + b.{x^2} + c\) ta suy ra đồ thị hàm số \(f\left( t \right)\)như sau:

Cho hàm số (fleft( x right) = a.{x^4} + b.{x^2} + c) có đồ thị như sau:</p> <!-- wp:image -->
<figure class="wp-block-image"><img src="https://lh4.googleusercontent.com/J1au1aH7dB8UfI_-KbZqdBc9LOnaGd7Zxu_c0cZnPVd7SoubeP3kya2jDVB6eiN_J7yDg5MeIVV6nTQw8SxUL7APHjBuO4dKpyn26uzaB-SG3DhQF0Z9yo9rmMk_yGcHz4pbvh0=s0" alt=""/></figure>
<!-- /wp:image --> <p>Số nghiệm thuộc đoạn (left[ { - pi ,;,frac{pi }{2}} right]) của phương trình (fleft( {fleft( {{rm{cos}}x} right) + 1} right) = 0) là</p> 2

Quan sát đồ thị ta thấy: PT \(f\left( t \right) =- a – 1\) vô nghiệm với \( – a – 1 \in \left( { – 3; – 2} \right)\)

PT \(f\left( t \right) = a – 1\), với \(a – 1 \in \left( {0;1} \right)\), có 2 nghiệm phân biệt \(t \notin \left[ { – 1;1} \right]\).

Vậy PT \(\left( 1 \right)\) vô nghiệm.

=======
Thuộc mục: Trắc nghiệm Sự tương giao đồ thị hàm số

Thuộc chủ đề:Trắc nghiệm Sự tương giao đồ thị hàm số Tag với:Tìm m để phương trình có nghiệm VDC, Tuong giao ham hop

Bài liên quan:

  1. Bài tập luyện tập TƯƠNG GIAO của hàm số – 2022
  2. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({f^2}\left( x \right) – \left( {m + 5} \right)\left| {f\left( x \right)} \right| + 4m + 4 = 0\) có 7 nghiệm phân biệt?
  3. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) để phương trình \(\left| {f\left( {2\sin x – 1} \right)} \right| = m\) có nghiệm thuộc khoảng \(\left( {0;\pi } \right)\). Tính số phần tử của tập \(S\).

  4. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt[3]{{f(x) + m}}} \right) = {x^3} – m\) có nghiệm \(x \in \left[ {1;\,2} \right]\) biết \(f(x) = {x^5} + 3{x^3} – 4m\).
  5. Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi \,;\,3\pi } \right]\) của phương trình \(2f\left( {\cos x} \right) – 3 = 0\) là

  6. Cho hàm số \(f\left( x \right)\), hàm số \(y = f’\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. bất phương trình \(f\left( x \right) < x + m\) (\(m\) là tham số thực) nghiệm đúng với mọi \(x \in \left( { – 1;0} \right)\) khi và chỉ khi

  7. Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\)có đồ thị như hình vẽ

    Có bao nhiêu giá trị nguyên của tham số \(m\)để phương trình \(f\left( {f\left( x \right) + m} \right) + 1 = f\left( x \right) + m\) có đúng 3 nghiệm phân biệt trên\(\left[ { – 1;1} \right]\)

  8. Cho hàm số có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi;2\pi } \right]\) của phương trình \(3f\left( {{\mathop{\rm s}\nolimits} {\rm{in2x}}} \right) – 5 = 0\) là

  9. Cho hàm số \(y = {x^4} – 2m{x^2} + 4m – 4\) (\(m\) là tham số thực). Xác định \(m\) để hàm số đã cho có \(3\) cực trị tạo thành tam giác có diện tích bằng \(1\).
  10. Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \(\left[ { – \pi;\,2\pi } \right]\) của phương trình \(3f\left( {{\rm{cos2}}x} \right) – 3 = 0\) là

  11. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ

    Tập hợp các giá trị \(m\) để phương trình \(f\left( {\cos 2x} \right) – 2m – 1 = 0\) có nghiệm thuộc khoảng \(\left( {\frac{{ – \pi }}{3};\frac{\pi }{4}} \right)\) là:

  12. Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên:

    .

    Số nghiệm thuộc đoạn \(\left[ { – \pi;4\pi } \right]\) của phương trình \(f\left( {\sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x} \right) – 1 = 0\) là

  13. Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{{mx – 4}}{{m – x}}\) nghịch biến trên khoảng \(\left( { – 3;1} \right)\)?

  14. Cho hàm số \(y = f(x)\) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực phân biệt của phương trình \(f\left( {f(x)} \right) = f(x)\) bằng

  15. Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ

    Số nghiệm của phương trình \(3f\left( {\cos x} \right) – 2 = 0\) trên khoảng \(\left( { – \frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) là:

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.