• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Đề bài: Với giá trị nào của m thì diện tích hình phẳng giới hạn bởi đồ thị hàm số  và  bằng 27 đơn vị diện tích.

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Với giá trị nào của m thì diện tích hình phẳng giới hạn bởi đồ thị hàm số  và  bằng 27 đơn vị diện tích. A. m=-1 B. m=-2 C. \(m \in \emptyset\) D. \(m \in\mathbb{R}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại … [Đọc thêm...] vềĐề bài: Với giá trị nào của m thì diện tích hình phẳng giới hạn bởi đồ thị hàm số  và  bằng 27 đơn vị diện tích.

Đề bài: Tính tích phân \(I = \int\limits_0^2 {\frac{x}{{\sqrt {x + 1} }}} dx.\)

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Trắc nghiệm PP tích phân từng phần

Câu hỏi: Tính tích phân \(I = \int\limits_0^2 {\frac{x}{{\sqrt {x + 1} }}} dx.\) A. \(\frac{4}{3}\) B. \(\frac{2}{3} + 2\sqrt 3 \) C. \(2\sqrt 3  - \frac{2}{3}\) D. \( - \frac{4}{3}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các … [Đọc thêm...] vềĐề bài: Tính tích phân \(I = \int\limits_0^2 {\frac{x}{{\sqrt {x + 1} }}} dx.\)

Đề bài: Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu \({h_1} = 280\,\,\,cm\). Giả sử \(h(t)\,\,cm\) là chiều cao của mực nước bơm được tại thời điểm \(t\) giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ \(t\) là \(h'(t) = \frac{1}{{500}}\sqrt[3]{{t + 3}}\) . Hỏi sau bao lâu thì nước bơm được \(\frac{3}{4}\) độ sâu của hồ bơi?​

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân chuyển động

Câu hỏi: Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu \({h_1} = 280\,\,\,cm\). Giả sử \(h(t)\,\,cm\) là chiều cao của mực nước bơm được tại thời điểm \(t\) giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ \(t\) là \(h'(t) = \frac{1}{{500}}\sqrt[3]{{t + 3}}\) . Hỏi sau bao lâu thì nước bơm được \(\frac{3}{4}\) độ sâu của hồ … [Đọc thêm...] vềĐề bài: Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu \({h_1} = 280\,\,\,cm\). Giả sử \(h(t)\,\,cm\) là chiều cao của mực nước bơm được tại thời điểm \(t\) giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ \(t\) là \(h'(t) = \frac{1}{{500}}\sqrt[3]{{t + 3}}\) . Hỏi sau bao lâu thì nước bơm được \(\frac{3}{4}\) độ sâu của hồ bơi?​

Đề bài: Cho tích phân \(\int\limits_2^3 {\frac{1}{{{x^3} + {x^2}}}dx = a\ln 3 + b\ln 2 + c} \) với \(a,b,c \in \mathbb{Q}\). Tính \(S = a + b + c.\)

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Trắc nghiệm tích phân biến đổi về dạng cơ bản

Câu hỏi: Cho tích phân \(\int\limits_2^3 {\frac{1}{{{x^3} + {x^2}}}dx = a\ln 3 + b\ln 2 + c} \) với \(a,b,c \in \mathbb{Q}\). Tính \(S = a + b + c.\) A. \(S =  - \frac{2}{3}\)    B. \(S =  - \frac{7}{6}\)  C. \(S = \frac{2}{3}\)   D.  \(S = \frac{7}{6}\) Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề bài: Cho tích phân \(\int\limits_2^3 {\frac{1}{{{x^3} + {x^2}}}dx = a\ln 3 + b\ln 2 + c} \) với \(a,b,c \in \mathbb{Q}\). Tính \(S = a + b + c.\)

Đề bài: Tính diện tích S của hình phẳng giới hạn bởi các đường: \(y = 1,y = \frac{1}{9}\left( {6{x^2} – {x^4}} \right).\)

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Tính diện tích S của hình phẳng giới hạn bởi các đường: \(y = 1,y = \frac{1}{9}\left( {6{x^2} - {x^4}} \right).\) A. \(S = \frac{{3\sqrt 3 }}{5}\) B. B. \(S = \sqrt 3 \)    C. \(S = \frac{{4\sqrt 3 }}{{15}}\) D. \(S = \frac{{16\sqrt 3 }}{{15}}\) Hãy chọn trả … [Đọc thêm...] vềĐề bài: Tính diện tích S của hình phẳng giới hạn bởi các đường: \(y = 1,y = \frac{1}{9}\left( {6{x^2} – {x^4}} \right).\)

Đề bài: Tìm nguyên hàm cuả hàm số  \(f(x) = \frac{{\sqrt {\ln x} }}{x}\).

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Nguyên hàm Tag với:Trắc nghiệm nguyên hàm pp đổi biến số

Câu hỏi: Tìm nguyên hàm cuả hàm số  \(f(x) = \frac{{\sqrt {\ln x} }}{x}\). A. \(\int {f(x)dx = 2{{\left( {\ln x} \right)}^{\frac{3}{2}}} + C}\) B. \(\int {f(x)dx = \frac{2}{3}\sqrt {{{\left( {\ln x} \right)}^3}} + C}\) C. \(\int {f(x)dx = \frac{1}{{2\sqrt {\ln x} }} + C}\) D. \(\int {f(x)dx = … [Đọc thêm...] vềĐề bài: Tìm nguyên hàm cuả hàm số  \(f(x) = \frac{{\sqrt {\ln x} }}{x}\).

Đề bài: Nếu F(x) là nguyên hàm của hàm số \(f(x)\), G(x) là nguyên hàm của hàm số \(g(x)\). Trong các khẳng định sau, khẳng định nào sai?

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Nguyên hàm Tag với:Trắc nghiệm tính chất nguyên hàm

Câu hỏi: Nếu F(x) là nguyên hàm của hàm số \(f(x)\), G(x) là nguyên hàm của hàm số \(g(x)\). Trong các khẳng định sau, khẳng định nào sai? A. \(\int {\left[ {f(x) + g(x)} \right]dx = \int {f(x)dx + \int {g(x)dx} } = F(x) + G(x) + C}\) B. Với mọi \(k\ne0\), ta có:\(\int {kf(x)dx = k\int {f(x)dx} } = kF(x) + C\) C. … [Đọc thêm...] vềĐề bài: Nếu F(x) là nguyên hàm của hàm số \(f(x)\), G(x) là nguyên hàm của hàm số \(g(x)\). Trong các khẳng định sau, khẳng định nào sai?

Đề bài: Biết \(\int\limits_0^a {\left( {2{\rm{x}} – 4} \right)d{\rm{x}}}  =  – 4.\) Khi đó a nhận giá trị bằng:

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Trắc nghiệm tích phân biến đổi về dạng cơ bản

Câu hỏi: Biết \(\int\limits_0^a {\left( {2{\rm{x}} - 4} \right)d{\rm{x}}}  =  - 4.\) Khi đó a nhận giá trị bằng: A. \(a =  - 4.\) B. \(a = 4.\) C. \(a =  - 2.\) D. \(a = 2.\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại … [Đọc thêm...] vềĐề bài: Biết \(\int\limits_0^a {\left( {2{\rm{x}} – 4} \right)d{\rm{x}}}  =  – 4.\) Khi đó a nhận giá trị bằng:

Đề bài: Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đường cong \(y = f\left( x \right),\)trục hoành, các đường thẳng \(x = a,x = b\) là:

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đường cong \(y = f\left( x \right),\)trục hoành, các đường thẳng \(x = a,x = b\) là: A. \(\int\limits_a^b {\left| {f\left( x \right)} \right|dx} \) {f\left( x \right)} dx\) B. \( - … [Đọc thêm...] vềĐề bài: Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đường cong \(y = f\left( x \right),\)trục hoành, các đường thẳng \(x = a,x = b\) là:

Đề bài: Cho \(I = \int\limits_0^a {\frac{{dx}}{{{a^2} + {x^2}}}\left( {a > 0} \right)} \) và đặt \(x = a\tan t\). Trong các mệnh đề sau đây, mệnh đề nào là mệnh đề sai?

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Tích phân Tag với:Trắc nghiệm tích phân pp đổi biến số

Câu hỏi: Cho \(I = \int\limits_0^a {\frac{{dx}}{{{a^2} + {x^2}}}\left( {a > 0} \right)} \) và đặt \(x = a\tan t\). Trong các mệnh đề sau đây, mệnh đề nào là mệnh đề sai? A. \(I = \int\limits_0^a {\frac{1}{a}dt.} \) B. \(dx = a\left( {1 + {{\tan }^2}t} \right)dt.\) C. \({a^2} + {x^2} = {a^2}\left( {1 + {{\tan }^2}t} … [Đọc thêm...] vềĐề bài: Cho \(I = \int\limits_0^a {\frac{{dx}}{{{a^2} + {x^2}}}\left( {a > 0} \right)} \) và đặt \(x = a\tan t\). Trong các mệnh đề sau đây, mệnh đề nào là mệnh đề sai?

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 1464
  • Trang 1465
  • Trang 1466
  • Trang 1467
  • Trang 1468
  • Interim pages omitted …
  • Trang 1758
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.