• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$

Bat dang thuc

Lời giải

Đề bài:
Cho $n \in Z,n \geq 1; a,b,c>0$.Chứng minh rằng:$\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$
Lời giải

Xét $n=1:$
BĐT trở thành : $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq\frac{3}{2}$

$VT=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ca+cb}\geq\frac{(a+b+c)^2}{2(ab+bc+ca)}
$( áp dụng BĐT Bunhiacopxki)

Mà $
ab+bc+ca\leq \frac{(a+b+c)^2}{3}$

$\Rightarrow
VT\geq\frac{3}{2}$ (dpcm)

Xét $n \geq 2$
Xét $3$ dãy số:
$\frac{a}{\sqrt[n]{b+c}},\sqrt[n]{b+c},\underbrace {1,1,…,1}_{n-2 số};$
$\frac{b}{\sqrt[n]{c+a}},\sqrt[n]{c+a},\underbrace {1,1,…,1}_{n-2 số};$
$\frac{c}{\sqrt[n]{a+b}},\sqrt[n]{a+b},\underbrace {1,1,…,1}_{n-2 số}$
Áp dụng BĐT Bunhiacopski(mở rộng):
$(\frac{a}{\sqrt[n]{b+c}}.\sqrt[n]{b+c}.1.1..1+\frac{b}{\sqrt[n]{c+a}}.\sqrt[n]{c+a}.1.1..1+\frac{c}{\sqrt[n]{a+b}}.\sqrt[n]{a+b}.1.1..1)$
$\leq (\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b})(b+c+c+a+a+b).\underbrace {(1+1+1)+…+(1+1+1)}_{n-2 thừa số}$
$\Rightarrow (a+b+c)^{n} \leq (\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b})2(a+b+c).3^{n-2}$
$\Rightarrow \frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq  \frac{3}{2}(\frac{a+b+c}{3})^{n-1}$
Dấu “=” xảy ra $\Leftrightarrow a=b=c$

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài:  Cho phương trình $\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}=m                              (1)$Tìm $m$ để phương trình có nghiệm duy nhất.
  2. Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng:  $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} .  (1)$
  3. Đề bài: Cho các số $a_1,a_2,b_1,b_2$. Chứng minh rằng:    $\sqrt {{{\left( {{a_1} + {a_2}} \right)}^2} + {{\left( {{b_1} + {b_2}} \right)}^2}}  \le \sqrt {{a_1}^2 + {b_1}^2}  + \sqrt {{a_2}^2 + {b_2}^2} $
  4. Đề bài: Cho  $\begin{cases}x,y,z \in [0;1] \\ x+y+z=\frac{3}{2} \end{cases}$Tìm giá trị lớn nhất  và giá trị nhỏ nhất của  $f(x,y,z)=\cos^2 (x^2+y^2+z^2)$
  5. Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$
  6. Đề bài: Cho $ab+bc+ca=4.$Chứng minh rằng: $a^{4}+b^{4}+c^{4}\geq \frac{16}{3}$
  7. Đề bài: Cho \(a,b,c\geq -\frac{3}{4}\) và \(a+b+c=3\). Chứng minh rằng: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\leq 3\sqrt{7}\).
  8. Đề bài: Cho  $\begin{cases}s,t,u,v \in (0;\frac{\pi}{2}) \\ s+t+u+v=\pi \end{cases}$Chứng minh rằng:  $\frac{\sqrt{2}\sin s-1}{\cos s}+\frac{\sqrt{2}\sin t-1}{\cos t}+\frac{\sqrt{2}\sin u-1}{\cos u}+\frac{\sqrt{2}\sin v-1}{\cos v}\geq 0$
  9. Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng:    $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c}          (1)$
  10. Đề bài: Cho $a,b,c>0$ và $a+b+c=1$ thì $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9$
  11. Đề bài: Cho \(6x+y=5\). Chứng minh rằng: \(9x^{2}+y^{2}\geq 5\).
  12. Đề bài: Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c}  $Với $a > 0,b > 0,c > 0$.  Tìm $\min y, \max y$
  13. Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng:    $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
  14. Đề bài: Cho $a^{2}+b^{2}=1$.Chứng minh: $a\sqrt{b+1}+b\sqrt{a+1}\leq \sqrt{2+\sqrt{2}}$
  15. Đề bài: Cho $x,y,z>0$. Chứng minh : $\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\geq 1$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.