• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Bất đẳng thức - Bài tập tự luận / Đề bài: Chứng minh rằng  $\forall a,b > 0,\,\forall x,y \in R$ ta có:$\sqrt {{{25}^x} + {9^y} + 1} .\sqrt {{a^2} + {b^2} + 1}  \ge a{.5^x} + b{.3^y} + 1\,\,\,\,(1)$

Đề bài: Chứng minh rằng  $\forall a,b > 0,\,\forall x,y \in R$ ta có:$\sqrt {{{25}^x} + {9^y} + 1} .\sqrt {{a^2} + {b^2} + 1}  \ge a{.5^x} + b{.3^y} + 1\,\,\,\,(1)$

Ngày 11/07/2021 Thuộc chủ đề:Bất đẳng thức - Bài tập tự luận Tag với:Bất đẳng thức Bunhiacốpxki

Đề bài: Chứng minh rằng  $\forall a,b > 0,\,\forall x,y \in R$ ta có:$\sqrt {{{25}^x} + {9^y} + 1} .\sqrt {{a^2} + {b^2} + 1}  \ge a{.5^x} + b{.3^y} + 1\,\,\,\,(1)$

Bat dang thuc

Lời giải

Đề bài:
Chứng minh rằng  $\forall a,b > 0,\,\forall x,y \in R$ ta có:$\sqrt {{{25}^x} + {9^y} + 1} .\sqrt {{a^2} + {b^2} + 1}  \ge a{.5^x} + b{.3^y} + 1\,\,\,\,(1)$
Lời giải

$1)$   Các vế không âm, nên bình phương và rút gọn hai vế ta có:
$\begin{array}{l}
(1) \Leftrightarrow \,\,\left( {{a^2}{9^y} – 2ab{5^x}{{.3}^y} + {b^2}{{25}^x}} \right) + \left( {{{25}^x} – 2a{5^x} + {a^2}} \right) + \left( {{9^y} – 2b{3^y} + {b^2}} \right) \ge 0\\
 \Leftrightarrow {\left( {a{{.3}^y} – b{{.5}^x}} \right)^2} + {\left( {{5^x} – a} \right)^2} + {\left( {{3^y} – b} \right)^2} \ge 0(2)
\end{array}$
Vế trái của (2) là tổng các bình phương nên (2) đúng, do vậy $(1)$ đúng.(đpcm)

=========
Chuyên mục: Bất đẳng thức Bunhiacốpxki

Bài liên quan:

  1. Đề bài: Chứng minh rằng với mọi số thực $x,y$ luôn có:   $(x^3+y^3)^2\leq (x^2+y^2)(x^4+y^4)$
  2. Đề bài: Cho:$x^{2}+y^{2}=u^{2}+v^{2}=1$.Chứng minh rằng:$-\sqrt{2}\leq x(u+v)+y(u-v)\leq \sqrt{2}$
  3. Đề bài: Giải bất phương trình:              $|x|\sqrt{1-x}+|x-1|\sqrt{x}\leq 1$
  4. Đề bài: Cho các số thực $x,y,z,t$ thỏa mãn $xyzt=1$. Chứng minh rằng:  $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yz)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3} .  (1)$
  5. Đề bài: Cho $a,b,c,p,q$ là năm số dương tùy ý. Chứng minh:         $\frac{a}{pb+qc}+\frac{b}{pc+qa}+\frac{c}{pa+qb}\geq \frac{3}{p+q}             (1)$
  6. Đề bài: Cho ba số nguyên dương $a,b,c$ chứng minh rằng:    $\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{a^2-ac+c^2}+\frac{c^3}{a^2-ab+b^2}\geq \frac{3(ab+bc+ca)}{a+b+c}          (1)$
  7. Đề bài: Cho ba số thực dương $a,b,c$ chứng minh rằng:    $\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\geq \frac{a+b+c}{2}$
  8. Đề bài: Cho các số thực $a,b$ thỏa mãn $a,b\geq 1$. Chứng minh rằng:   $\sqrt{\ln a}+\sqrt{\ln b}\leq 2\sqrt{\ln\frac{a+b}{2}}$
  9. Đề bài: Cho các số thực $a,b,c$ thỏa mãn $a>b>c>0$. Chứng minh rằng:    $\sqrt{c(a-c)}+\sqrt{c(b-c)}\leq \sqrt{ab}$
  10. Đề bài: Chứng minh rằng với mọi số thực $a,b,c$ thỏa mãn $a^2+b^2+c^2= 1$, ta có:   $a+2b+3c\leq \sqrt{14}$
  11. Đề bài: Cho ba số thực $a,b,c$ thỏa mãn $a(a-1)+b(b-1)+c(c-1)\leq \frac{4}{3}$.Chứng minh rằng $a+b+c\leq 4$
  12. Đề bài: Chứng minh rằng với ba số thực $a,b,c$ thỏa mãn $ab+bc+ca=4$. ta luôn có:   $a^4+b^4+c^4\geq \frac{16}{3}$
  13. Đề bài: Chứng minh rằng với ba số thực $a,b,c$ tùy ý, ta có:  $ab+bc+ac\leq a^2+b^2+c^2$
  14. Đề bài: Cho: $\begin{cases}x^{2}+y^{2}=4 \\ z^{2}+t^{2}=9\\xt+yz\geq 6 \end{cases}$Chứng minh rằng: $xz \leq 3$
  15. Đề bài: Chứng minh rằng : $\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}$.Trong đó $a,b,c$ là các số thực không âm thỏa mãn $a+b+c=1$.

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.