Câu hỏi: Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đường cong \(y = f\left( x \right),\)trục hoành, các đường thẳng \(x = a,x = b\) là: A. \(\int\limits_a^b {\left| {f\left( x \right)} \right|dx} \) {f\left( x \right)} dx\) B. \( - … [Đọc thêm...] vềĐề bài: Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đường cong \(y = f\left( x \right),\)trục hoành, các đường thẳng \(x = a,x = b\) là:
Trắc nghiệm Ứng dụng Tích phân
Đề bài: Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^2} – 4\) và \(y = x – 4\)
Câu hỏi: Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^2} - 4\) và \(y = x - 4\) A. \(S = \frac{{43}}{6}\) B. \(S = \frac{{161}}{6}\) C. \(S = \frac{1}{6}\) D. \(S = \frac{5}{6}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời … [Đọc thêm...] vềĐề bài: Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^2} – 4\) và \(y = x – 4\)
Đề bài: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} + 2\) và đường thẳng y = 3x
Câu hỏi: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} + 2\) và đường thẳng y = 3x A. \(1\) B. \(\frac{1}{4}\) C. \(\frac{1}{6}\) D. \(\frac{1}{2}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại … [Đọc thêm...] vềĐề bài: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} + 2\) và đường thẳng y = 3x
Đề bài: Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường y = tanx, y = 0, x = 0, x = \(\frac{\pi }{3}\) quanh Ox là:
Câu hỏi: Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường y = tanx, y = 0, x = 0, x = \(\frac{\pi }{3}\) quanh Ox là: A. \(\sqrt 3 - \frac{\pi }{3}\) B. \(\frac{\pi }{3} - 3\) C. \(\frac{{{\pi ^2}}}{3} - \pi \sqrt 3 \) D. \(\pi \sqrt 3 - \frac{{{\pi … [Đọc thêm...] vềĐề bài: Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường y = tanx, y = 0, x = 0, x = \(\frac{\pi }{3}\) quanh Ox là:
Đề bài: Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức \(v(t) = 3t + 2\), thời gian được tính theo đơn vị giây, quãng đường đi được tính theo đơn vị met. Tại thời điểm t=2s thì vật đi được quãng đường 10m. Hỏi tại thời điểm t=30s thì vật đi được quãng đường là bao nhiêu?
Câu hỏi: Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức \(v(t) = 3t + 2\), thời gian được tính theo đơn vị giây, quãng đường đi được tính theo đơn vị met. Tại thời điểm t=2s thì vật đi được quãng đường 10m. Hỏi tại thời điểm t=30s thì vật đi được quãng đường là bao nhiêu? A. 1410 m B. 1140 … [Đọc thêm...] vềĐề bài: Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức \(v(t) = 3t + 2\), thời gian được tính theo đơn vị giây, quãng đường đi được tính theo đơn vị met. Tại thời điểm t=2s thì vật đi được quãng đường 10m. Hỏi tại thời điểm t=30s thì vật đi được quãng đường là bao nhiêu?
Đề bài: Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = {x^2} – 4{\rm{x}},\,\,y = 0\) quanh trục Ox.
Câu hỏi: Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = {x^2} - 4{\rm{x}},\,\,y = 0\) quanh trục Ox. A. \(\frac{{512}}{{15}}\pi .\) B. \(\frac{{2548}}{{15}}\pi .\) C. \(\frac{{15872}}{{15}}\pi .\) D. \(\frac{{32}}{3}\pi .\) Hãy chọn trả lời … [Đọc thêm...] vềĐề bài: Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = {x^2} – 4{\rm{x}},\,\,y = 0\) quanh trục Ox.
Đề bài: Tính diện tích S của hình phẳng được giới hạn bởi các đường \(x = 0;y = {e^x};x = 1.\)
Câu hỏi: Tính diện tích S của hình phẳng được giới hạn bởi các đường \(x = 0;y = {e^x};x = 1.\) A. \(S = e - 1\) B. \(S = \frac{1}{2}e + \frac{1}{2}\) C. \(S = \frac{3}{2}e - \frac{1}{2}\) D. \(S = 2{\rm{e}} - 3\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có … [Đọc thêm...] vềĐề bài: Tính diện tích S của hình phẳng được giới hạn bởi các đường \(x = 0;y = {e^x};x = 1.\)
Đề bài: Diện tích hình phẳng giới hạn bởi đồ thị \(y = {x^3} – 3{{\rm{x}}^2} + 2{\rm{x}},\) trục hoành, trục tung và đường thẳng \(x = 3\) là:
Câu hỏi: Diện tích hình phẳng giới hạn bởi đồ thị \(y = {x^3} - 3{{\rm{x}}^2} + 2{\rm{x}},\) trục hoành, trục tung và đường thẳng \(x = 3\) là: A. \(\frac{5}{6}.\) B. \(\frac{{17}}{4}.\) C. \(\frac{{11}}{4}.\) D. \(\frac{{17}}{3}.\) Hãy chọn trả lời đúng trước khi xem đáp án và … [Đọc thêm...] vềĐề bài: Diện tích hình phẳng giới hạn bởi đồ thị \(y = {x^3} – 3{{\rm{x}}^2} + 2{\rm{x}},\) trục hoành, trục tung và đường thẳng \(x = 3\) là:
Đề bài: Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với \(A\left( { – 1;2} \right),B\left( {5;5} \right),C\left( {5;0} \right),\)\(D\left( { – 1;0} \right).\) Quay hình thang ABCD xung quanh trục Ox thì thể tích khối nón tròn xoay tạo thành là bao nhiêu?
Câu hỏi: Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với \(A\left( { - 1;2} \right),B\left( {5;5} \right),C\left( {5;0} \right),\)\(D\left( { - 1;0} \right).\) Quay hình thang ABCD xung quanh trục Ox thì thể tích khối nón tròn xoay tạo thành là bao nhiêu? A. \(72\pi .\) B. \(74\pi .\) C. \(76\pi … [Đọc thêm...] vềĐề bài: Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với \(A\left( { – 1;2} \right),B\left( {5;5} \right),C\left( {5;0} \right),\)\(D\left( { – 1;0} \right).\) Quay hình thang ABCD xung quanh trục Ox thì thể tích khối nón tròn xoay tạo thành là bao nhiêu?
Đề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = 0,\,y = x\sqrt {\ln (x + 1)}\) và x = 1 xung quanh trục Ox.
Câu hỏi: Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = 0,\,y = x\sqrt {\ln (x + 1)}\) và x = 1 xung quanh trục Ox. A. \(V = \frac{\pi }{{18}}(12\ln 2 - 5)\) B. \(V = \frac{{5\pi }}{{18}}\) C. \(V = \frac{{5\pi }}{{6}}\) D. \(V = \frac{\pi }{6}(12\ln … [Đọc thêm...] vềĐề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = 0,\,y = x\sqrt {\ln (x + 1)}\) và x = 1 xung quanh trục Ox.