• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Ứng dụng Tích phân

Đề bài: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = x\sin 2x\), trục hoành và các đường thẳng \(x = 0,x = \pi .\)

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = x\sin 2x\), trục hoành và các đường thẳng \(x = 0,x = \pi .\) A. \(S = 2\pi\) B. \(S = \frac{\pi}{4}\) C. \(S = \frac{\pi}{2}\) D. \(S = \pi\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. … [Đọc thêm...] vềĐề bài: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = x\sin 2x\), trục hoành và các đường thẳng \(x = 0,x = \pi .\)

Đề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay  hình phẳng giới hạn bởi đồ thị hàm số y=lnx, trục Ox, và đường thẳng x=2 quanh trục Ox.

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích V của khối tròn xoay tạo thành khi quay  hình phẳng giới hạn bởi đồ thị hàm số y=lnx, trục Ox, và đường thẳng x=2 quanh trục Ox. A. \(V = \pi {\left( {\ln 4 - 1} \right)^2}\) B. \(V = \pi {\left( {\ln 4 - 1} \right)^2}\) C. \(V = 2\pi {\left( {\ln 2 - 1} \right)^2}\) D. \(V … [Đọc thêm...] vềĐề bài: Tính thể tích V của khối tròn xoay tạo thành khi quay  hình phẳng giới hạn bởi đồ thị hàm số y=lnx, trục Ox, và đường thẳng x=2 quanh trục Ox.

Đề bài: Một vật chuyển động với vận tốc \(v(t)\,(m/s)\) có gia tốc \(v'(t) = \frac{3}{{1 + t}}(m/{s^2})\). Vân tốc ban đầu của vật là 6 m/s. Tính vận tốc của vật sau 10 giây (làm tròn kết quả đến hàng đơn vị).

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân chuyển động

Câu hỏi: Một vật chuyển động với vận tốc \(v(t)\,(m/s)\) có gia tốc \(v'(t) = \frac{3}{{1 + t}}(m/{s^2})\). Vân tốc ban đầu của vật là 6 m/s. Tính vận tốc của vật sau 10 giây (làm tròn kết quả đến hàng đơn vị). A. 14 m/s B. 13 m/s C. 11 m/s D. 12 m/s Hãy chọn trả lời đúng trước khi … [Đọc thêm...] vềĐề bài: Một vật chuyển động với vận tốc \(v(t)\,(m/s)\) có gia tốc \(v'(t) = \frac{3}{{1 + t}}(m/{s^2})\). Vân tốc ban đầu của vật là 6 m/s. Tính vận tốc của vật sau 10 giây (làm tròn kết quả đến hàng đơn vị).

Đề bài: Tính thể tích V của vật thể nằm giữa hai mặt phẳng \(x = 0;x = \pi\), biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ  \(x\left( {0 \le x \le \pi } \right)\) là một tam giác đều có cạnh là \(2\sqrt {\sin x} .\)

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích V của vật thể nằm giữa hai mặt phẳng \(x = 0;x = \pi\), biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ  \(x\left( {0 \le x \le \pi } \right)\) là một tam giác đều có cạnh là \(2\sqrt {\sin x} .\) A. \(V = \sqrt 3\) B. \(V = \frac{\pi}{\sqrt 3}\) C. … [Đọc thêm...] vềĐề bài: Tính thể tích V của vật thể nằm giữa hai mặt phẳng \(x = 0;x = \pi\), biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ  \(x\left( {0 \le x \le \pi } \right)\) là một tam giác đều có cạnh là \(2\sqrt {\sin x} .\)

Đề bài: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^4} – x\), đường thẳng x=2, trục tung và trục hoành.

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^4} - x\), đường thẳng x=2, trục tung và trục hoành. A. \(S = \frac{{22}}{5}\pi\) B. \(S = \frac{{344}}{9}\pi\) C. \(S = 5\) D. \(S = \frac{{44}}{5}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải … [Đọc thêm...] vềĐề bài: Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^4} – x\), đường thẳng x=2, trục tung và trục hoành.

Đề bài: Tính thể tích của khối tròn xoay được tạo thành khi quay hình phẳng được giới hạn bởi \(y = 2 – {x^2};y = 1\) quanh trục Ox.

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Tính thể tích của khối tròn xoay được tạo thành khi quay hình phẳng được giới hạn bởi \(y = 2 - {x^2};y = 1\) quanh trục Ox. A. \(S = \frac{{56}}{{15}}\pi \) B. \(S = \frac{{15}}{{56}}\pi \) C. \(S = \frac{{56}}{{15}}\) D. \(S = \frac{{15}}{{56}}\) Hãy chọn trả lời đúng … [Đọc thêm...] vềĐề bài: Tính thể tích của khối tròn xoay được tạo thành khi quay hình phẳng được giới hạn bởi \(y = 2 – {x^2};y = 1\) quanh trục Ox.

Đề bài: Thể tích khối tròn xoay khi quay quanh trục hoành phần hình phẳng giới hạn bởi 2 đường \(y = {x^2}\) và \(y = \sqrt x \) là:

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân thể tích vật thể tròn xoay

Câu hỏi: Thể tích khối tròn xoay khi quay quanh trục hoành phần hình phẳng giới hạn bởi 2 đường \(y = {x^2}\) và \(y = \sqrt x \) là: A. \(\frac{\pi }{{10}}.\)  B. \(\frac{{2\pi }}{{15}}.\)   C. \(\frac{{3\pi }}{{10}}.\)   D. \(\frac{{3\pi }}{5}.\) Hãy chọn trả lời đúng trước khi … [Đọc thêm...] vềĐề bài: Thể tích khối tròn xoay khi quay quanh trục hoành phần hình phẳng giới hạn bởi 2 đường \(y = {x^2}\) và \(y = \sqrt x \) là:

Đề bài: Viết công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=x^2-1\), trục hoành và đường thẳng x = 2.​

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Viết công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=x^2-1\), trục hoành và đường thẳng x = 2.​ A. \(S = \int\limits_0^2 {\left| {{x^2} - 1} \right|d{\rm{x}}}\)  B. \(S = \int\limits_{ - 1}^1 {\left| {{x^2} - 1} \right|d{\rm{x}}}\)  C. \(S = \left| {\int\limits_0^2 {\left( {{x^2} - 1} … [Đọc thêm...] vềĐề bài: Viết công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=x^2-1\), trục hoành và đường thẳng x = 2.​

Đề bài: Tính diện tích S của hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = {x^3}.\)

Ngày 03/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi: Tính diện tích S của hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = {x^3}.\) A. \(S = \frac{1}{2}\) B. \(S = \frac{5}{{12}}\) C. \(S = 1\) D. \(S = \frac{3}{2}\) Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới. Có vấn đề về lời giải xin các bạn để lại phản hồi cuối bài. Đáp … [Đọc thêm...] vềĐề bài: Tính diện tích S của hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = {x^3}.\)

Đề bài:  Diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = x2 và y = 2x là:

Ngày 02/06/2019 Thuộc chủ đề:Trắc nghiệm Ứng dụng Tích phân Tag với:Trắc nghiệm ứng dụng tích phân diện tích hình phẳng

Câu hỏi:  Diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = x2 và y = 2x là: A. \(\frac{4}{3}\) B. \(\frac{3}{2}\) C. \(\frac{5}{3}\) D. \(\frac{{23}}{{15}}\) Đáp án đúng: A Phương trình hoành độ giao điểm: \(\begin{array}{l} {x^2} = 2x \Leftrightarrow {x^2} - 2x = 0 … [Đọc thêm...] vềĐề bài:  Diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = x2 và y = 2x là:

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 29
  • Trang 30
  • Trang 31
  • Trang 32
  • Trang 33
  • Interim pages omitted …
  • Trang 35
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.