• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Toán 12
  • Toán 11
  • Toán 10
  • Trắc nghiệm
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán

Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan

Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A(2;0;0),\,B(0;2;0),\,C(0;0;2),\,D(2;2;2)\). Tìm bán kính mặt cầu ngoại tiếp tứ diện ABCD.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho \(A(2;0;0),\,B(0;2;0),\,C(0;0;2),\,D(2;2;2)\). Tìm bán kính mặt cầu ngoại tiếp tứ diện ABCD. A. \(R = 3\) B. \(R = \sqrt 3\) C. \(R = \frac{{\sqrt 3 }}{2}\) D. \(R = \frac{{\sqrt 2 }}{3}\) Hãy chọn trả lời đúng trước khi … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho \(A(2;0;0),\,B(0;2;0),\,C(0;0;2),\,D(2;2;2)\). Tìm bán kính mặt cầu ngoại tiếp tứ diện ABCD.

Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x – 2}}{2} = \frac{y}{{ – 1}} = \frac{z}{4}\) và mặt cầu (S) có phương trình \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 2\). Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Tính độ dài đoạn thẳng MN.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 2}}{2} = \frac{y}{{ - 1}} = \frac{z}{4}\) và mặt cầu (S) có phương trình \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 2\). Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x – 2}}{2} = \frac{y}{{ – 1}} = \frac{z}{4}\) và mặt cầu (S) có phương trình \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 2\). Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Tính độ dài đoạn thẳng MN.

Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = t\\ y = – 1\\ z = – t \end{array} \right.,t \in R\) và 2 mặt phẳng \(\left( \alpha \right):x + 2y + 2{\rm{z}} + 3 = 0\) và \(\left( \beta \right):x + 2y + 2{\rm{z}} + 7 = 0\). Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d và tiếp xúc với hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = t\\ y = - 1\\ z = - t \end{array} \right.,t \in R\) và 2 mặt phẳng \(\left( \alpha \right):x + 2y + 2{\rm{z}} + 3 = 0\) và \(\left( \beta \right):x + 2y + 2{\rm{z}} + 7 = 0\). Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d và tiếp xúc với hai mặt phẳng … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l} x = t\\ y = – 1\\ z = – t \end{array} \right.,t \in R\) và 2 mặt phẳng \(\left( \alpha \right):x + 2y + 2{\rm{z}} + 3 = 0\) và \(\left( \beta \right):x + 2y + 2{\rm{z}} + 7 = 0\). Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d và tiếp xúc với hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\).

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\Delta :\frac{x}{1} = \frac{{x + 3}}{1} = \frac{z}{2}\) . Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt{2}\) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\Delta :\frac{x}{1} = \frac{{x + 3}}{1} = \frac{z}{2}\) . Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt{2}\) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I. A. \(I\left( {1; - 2;2} … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\Delta :\frac{x}{1} = \frac{{x + 3}}{1} = \frac{z}{2}\) . Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt{2}\) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I.

Đề: Trong không gian với hệ tọa độ Oxyz, với giá trị nào của m thì phương trình \({x^2} + {y^2} + {z^2} – 2mx + 2(m – 1)y + 4z + 5m = 0\) là phương trình mặt cầu?

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, với giá trị nào của m thì phương trình \({x^2} + {y^2} + {z^2} - 2mx + 2(m - 1)y + 4z + 5m = 0\) là phương trình mặt cầu? A. \(1 \le m \le \frac{5}{2}\) B. \(m \frac{5}{2}\) C. \(m \ge 3\) D. Một số đáp án khác Hãy chọn trả … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, với giá trị nào của m thì phương trình \({x^2} + {y^2} + {z^2} – 2mx + 2(m – 1)y + 4z + 5m = 0\) là phương trình mặt cầu?

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua điểm \(A\left( {2; – 2;5} \right)\) và tiếp xúc với các mặt phẳng \(\left( \alpha \right):x = 1,\left( \beta \right):y = – 1,\left( \gamma \right):z = 1\). Tim bán kính R của mặt cầu (S).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua điểm \(A\left( {2; - 2;5} \right)\) và tiếp xúc với các mặt phẳng \(\left( \alpha \right):x = 1,\left( \beta \right):y = - 1,\left( \gamma \right):z = 1\). Tim bán kính R của mặt cầu (S). A. \(R=\sqrt{33}\) B.  R=1 C. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua điểm \(A\left( {2; – 2;5} \right)\) và tiếp xúc với các mặt phẳng \(\left( \alpha \right):x = 1,\left( \beta \right):y = – 1,\left( \gamma \right):z = 1\). Tim bán kính R của mặt cầu (S).

Đề: Cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} – 4x – 2y + 2z + 5 = 0\) và mặt phẳng \(\left( P \right):3x – 2y + 6z + m = 0.\) Tìm tập hợp các giá trị của m để (S) và (P) có điểm chung.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} - 4x - 2y + 2z + 5 = 0\) và mặt phẳng \(\left( P \right):3x - 2y + 6z + m = 0.\) Tìm tập hợp các giá trị của m để (S) và (P) có điểm chung. A. \(m \in \left( { - \infty ; - 5} \right) \cup \left( {9; + \infty } \right)\) B. \(m \in \left[ { - 5;9} … [Đọc thêm...] vềĐề: Cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} – 4x – 2y + 2z + 5 = 0\) và mặt phẳng \(\left( P \right):3x – 2y + 6z + m = 0.\) Tìm tập hợp các giá trị của m để (S) và (P) có điểm chung.

Đề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( \alpha \right):x + y + z + 3 = 0\), gọi (C) là đường tròn giao tuyến của mặt cầu \({x^2} + {y^2} + {z^2} – 4x + 6y + 6z + 17 = 0\) và mặt phẳng \(x – 2y + 2z + 1 = 0\). Gọi (S) là mặt cầu có tâm I thuộc \(\left( \alpha \right)\) và chứa (C). Viết phương trình của (S).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( \alpha \right):x + y + z + 3 = 0\), gọi (C) là đường tròn giao tuyến của mặt cầu \({x^2} + {y^2} + {z^2} - 4x + 6y + 6z + 17 = 0\) và mặt phẳng \(x - 2y + 2z + 1 = 0\). Gọi (S) là mặt cầu có tâm I thuộc \(\left( \alpha \right)\) và chứa (C). Viết phương trình của (S). Hãy … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( \alpha \right):x + y + z + 3 = 0\), gọi (C) là đường tròn giao tuyến của mặt cầu \({x^2} + {y^2} + {z^2} – 4x + 6y + 6z + 17 = 0\) và mặt phẳng \(x – 2y + 2z + 1 = 0\). Gọi (S) là mặt cầu có tâm I thuộc \(\left( \alpha \right)\) và chứa (C). Viết phương trình của (S).

Đề: Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD biết \(A\left( {1;1;0} \right),B\left( {1;0;2} \right),C\left( {2;0;1} \right)\), \(D\left( { – 1;0; – 3} \right)\) . Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD biết \(A\left( {1;1;0} \right),B\left( {1;0;2} \right),C\left( {2;0;1} \right)\), \(D\left( { - 1;0; - 3} \right)\) . Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD. A. \({x^2} + {y^2} + {z^2} + \frac{5}{7}x + \frac{5}{7}z - \frac{{50}}{7} = 0\) B. \({x^2} + … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD biết \(A\left( {1;1;0} \right),B\left( {1;0;2} \right),C\left( {2;0;1} \right)\), \(D\left( { – 1;0; – 3} \right)\) . Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.

Đề: Trong không gian hệ tọa độ Oxyz cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 2x – 4y + 2z + 2 = 0\). Tìm tâm I và bán kính R của mặt cầu (S).

Ngày 26/05/2019 Thuộc chủ đề:Trắc nghiệm Phương trình mặt cầu và các dạng toán liên quan Tag với:Trac nghiem hinh hoc OXYZ phuong trinh mat cau

==== Câu hỏi: Trong không gian hệ tọa độ Oxyz cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 2x - 4y + 2z + 2 = 0\). Tìm tâm I và bán kính R của mặt cầu (S). A. I(1;-2;1) và R = 2 B. I(-1;2;-1) và R = 4     C. I(1;-2;1) và R = 4 D. I(-1;2;-1) và R = 2  Hãy chọn trả … [Đọc thêm...] vềĐề: Trong không gian hệ tọa độ Oxyz cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} + 2x – 4y + 2z + 2 = 0\). Tìm tâm I và bán kính R của mặt cầu (S).

  • « Chuyển đến Trang trước
  • Trang 1
  • Interim pages omitted …
  • Trang 15
  • Trang 16
  • Trang 17
  • Trang 18
  • Trang 19
  • Interim pages omitted …
  • Trang 21
  • Chuyển đến Trang sau »

Sidebar chính

MỤC LỤC

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.